CSE 332:
Spanning Trees

Richard Anderson, Steve Seitz
Winter 2014

Union Find Review

» Data: set of pairwise disjoint sets.
* Operations

—Union — merge two sets to create their union
— Find — determine which set an item appears in

* Amortized complexity

— M Union and Find operations, on a set of size N
— Runtime O(M log*N)

Announcements

+ HW3 part 3 due Thursday night

Final exam topics posted online
— also sample final

— covers everything except NP-completeness
— closed book, notes

—4:30 or 6:30 on Monday (attend either one)

A Hidden Tree

Start

Spanning Tree in a Graph

Spanning tree
- Connects all the vertices
- No cycles

Undirected Graph

« G=(V,E)
—V is a set of vertices (or nodes)
—E is a set of unordered pairs of vertices

3 V={1,234567}
E={(1,2),(1,6),(1,5),(2,7),(2,3),
(3,4),(4,7),(4,5),(5.6)}

2 and 3 are adjacent
2 isincident to edge (2,3)

Spanning Tree Problem

* Input: An undirected graph G = (V,E). G is
connected.

* Output: T < E such that
—(V,T) is a connected graph
—(V,T) has no cycles

Spanning Tree Algorithm

ST(Vertex i) {
mark i; Main() {
for each j adjacentto i { T = empty set;
if (j is unmarked) { ST(1);
Add (i,j)to T; }
ST();
}
}
}

Best Spanning Tree

Finding a reliable routing subnetwork:
» edge cost = probability that it won't fail
» Find the spanning tree that is least likely to fail

Example of a Spanning Tree

Probability of success = .85 x .95 x .89 x .95 x 1.0 x .84
= 5735

10

Minimum Spanning Trees
Given an undirected graph G=(V,E), find
a graph G’=(V, E’) such that:
—FE’is asubset of E
—IEl=V]-1 G’ isa minimum
spanning tree.

— G’ is connected

- is minimal
2 o

(u,v)eE’

Applications: wiring a house, power
grids, Internet connections

Minimum Spanning Tree
Problem

* Input: Undirected Graph G = (V,E) and
C(e) is the cost of edge e.

+ Output: A spanning tree T with minimum
total cost. Thatis: T that minimizes

CM=YC(e)

esT

12

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a
cycle. Pick an edge with the smallest weight.

13

Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
empty MST
all vertices marked unconnected
all edges unmarked
2. While there are still unmarked edges
a. Pick the lowest cost edge (u,v) and mark it

b. If uand v are not already connected, add (u,v) to the MST

and mark u and v as connected to each other

Sound familiar?

14

Example of for Kruskal

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)
0o 1 1 2 2 3 3 3 3 4

15

Data Structures for Kruskal

» Sorted edge list

(7,4) 2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3.4) (1,5)
0 1 1 2 2 3 3 3 3 4

+ Disjoint Union / Find
— Union(a,b) - merge the disjoint sets named by a and b
— Find(a) returns the name of the set containing a

16

Example of DU/F

17

Kruskal’s Algorithm

» Add the cheapest edge that joins disjoint
components

Kruskal’'s Algorithm with DU / F

Sort the edges by increasing cost;
Initialize A to be empty;
for each edge (i,j) chosen in increasing order do
u := Find(i);
v := Find(j);
if not(u = v) then
add (i,j) to A;
Union(u,v);

This algorithm will work, but it goes through all the edges.

Is this always necessary?
19

Kruskal code

void Graph: :kruskal() { |V\ 00s 10 init. sets
int edgesAccepted = 0; P :
DisjSet s(NUM _VERTICES) ; _
|E| heap ops

while (edgesAccepted < NUM_VERTICES 1){
e = smallest weight edge not deleted yet;
// edge e = (u, v)
uset = s.find(u);
\.rset = s.find(v);
if (uset !'= vset){
edgesAccepted++;
s.unionSets (uset, vset);

} '\
o

Total Cost: 2

Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it Ty.

Suppose Ty is not minimum:

Pick another spanning tree T, with lower cost than Ty

Pick the smallest edge e;=(u,v) in Ty thatis notin T,

Tmin already has a path pin T, fromutov
= Adding e, to T, will create a cycle in T,

Pick an edge e, in p that Kruskal’s algorithm considered
after adding e, (must exist: u and v unconnected when e;
considered)
= cost(e,) > cost(e;)
= can replace e, with e, in T ;, without increasing cost!

Keep doing this until T,,,;, is identical to Ty
= Ty must also be minimal — contradiction!

21

