Announcements

- HW3 part 3 due Thursday night
- Final exam topics posted online
 - also sample final
 - covers everything except NP-completeness
 - closed book, notes
 - 4:30 or 6:30 on Monday (attend either one)

Union Find Review

- Data: set of pairwise disjoint sets.
- Operations
 - **Union** – merge two sets to create their union
 - **Find** – determine which set an item appears in
- Amortized complexity
 - M Union and Find operations, on a set of size N
 - Runtime O(M log*N)

Spanning Tree in a Graph

- **Spanning tree**
 - Connects all the vertices
 - No cycles

Undirected Graph

- **G = (V,E)**
 - V is a set of vertices (or nodes)
 - E is a set of unordered pairs of vertices

V = \{1,2,3,4,5,6,7\}
E = \{(1,2),(1,6),(1,5),(2,7),(2,3),(3,4),(4,7),(4,5),(5,6)\}

2 and 3 are adjacent
2 is incident to edge (2,3)
Spanning Tree Problem

- **Input:** An undirected graph $G = (V, E)$. G is connected.
- **Output:** $T \subseteq E$ such that
 - (V, T) is a connected graph
 - (V, T) has no cycles

Spanning Tree Algorithm

ST(Vertex i) {
 mark i;
 for each j adjacent to i {
 if (j is unmarked) {
 Add (i, j) to T;
 ST(j);
 }
 }
}

ST(1);

Main() {
 T = empty set;
 ST(1);
}

Best Spanning Tree

Finding a reliable routing subnetwork:

- edge cost = probability that it won't fail
- Find the spanning tree that is least likely to fail

Example of a Spanning Tree

Probability of success = $.85 \times .95 \times .89 \times .95 \times 1.0 \times .84 = .5735$

Minimum Spanning Trees

Given an undirected graph $G=(V, E)$, find a graph $G'=(V, E')$ such that:
- E' is a subset of E
- $|E'| = |V| - 1$
- G' is connected
- $\sum_{(u,v) \in E'} C_{uv}$ is minimal

G' is a minimum spanning tree.

Applications: wiring a house, power grids, Internet connections

Minimum Spanning Tree Problem

- **Input:** Undirected Graph $G = (V, E)$ and $C(e)$ is the cost of edge e.
- **Output:** A spanning tree T with minimum total cost. That is: T that minimizes

$$C(T) = \sum_{e \in T} C(e)$$
Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

\[G = (V, E) \]

Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked
2. While there are still unmarked edges
 a. Pick the lowest cost edge \((u, v)\) and mark it
 b. If \(u\) and \(v\) are not already connected, add \((u, v)\) to the MST and mark \(u\) and \(v\) as connected to each other

Sound familiar?

Example of for Kruskal

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

\[(7, 4) (2, 1) (7, 5) (5, 6) (5, 4) (1, 6) (2, 7) (2, 3) (3, 4) (1, 5)\]

\[
\begin{array}{ccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

Data Structures for Kruskal

- Sorted edge list
 \[(7, 4) (2, 1) (7, 5) (5, 6) (5, 4) (1, 6) (2, 7) (2, 3) (3, 4) (1, 5)\]
 \[
 0 \quad 1 \quad 2 \quad 3 \quad 3 \quad 3 \quad 3 \quad 4
 \]

- Disjoint Union / Find
 - Union(a, b) - merge the disjoint sets named by \(a\) and \(b\)
 - Find(a) returns the name of the set containing \(a\)

Example of DU/F

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

\[(7, 4) (2, 1) (7, 5) (5, 6) (5, 4) (1, 6) (2, 7) (2, 3) (3, 4) (1, 5)\]

Kruskal’s Algorithm

- Add the cheapest edge that joins disjoint components
Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost;
Initialize A to be empty;
for each edge \((i,j)\) chosen in increasing order do

 \(u := \text{Find}(i)\);

 \(v := \text{Find}(j)\);

 if not\((u = v)\) then
 add \((i,j)\) to \(A\);
 Union\((u,v)\);

This algorithm will work, but it goes through all the edges.
Is this always necessary?

Kruskal code

```cpp
void Graph::kruskal()
{
  int edgesAccepted = 0;
  DisjSet s(NUM_VERTICES);

  while (edgesAccepted < NUM_VERTICES - 1)
  {
    e = smallest weight edge not deleted yet;
    // edge e = (u, v)
   uset = s.find(u);
    vset = s.find(v);
    if (uset != vset)
    {
      edgesAccepted++;
      s.unionSets(uset, vset);
    }
  }
}
```

Total Cost:

Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it \(T_K\).
Suppose \(T_K\) is not minimum:
Pick another spanning tree \(T_{\text{min}}\) with lower cost than \(T_K\)
Pick the smallest edge \(e_1 = (u, v)\) in \(T_K\) that is not in \(T_{\text{min}}\)
\(T_{\text{min}}\) already has a path \(p\) in \(T_{\text{min}}\) from \(u\) to \(v\)
 \(\Rightarrow\) Adding \(e_1\) to \(T_{\text{min}}\) will create a cycle in \(T_{\text{min}}\)
Pick an edge \(e_2\) in \(p\) that Kruskal’s algorithm considered
 after adding \(e_1\) (must exist: \(u\) and \(v\) unconnected when \(e_1\) considered)
 \(\Rightarrow\) \(\text{cost}(e_2) \geq \text{cost}(e_1)\)
 \(\Rightarrow\) can replace \(e_2\) with \(e_1\) in \(T_{\text{min}}\) without increasing cost!
Keep doing this until \(T_{\text{min}}\) is identical to \(T_K\)
 \(\Rightarrow\) \(T_K\) must also be minimal – contradiction!