
1

CSE 332: Data Structures

Disjoint Set Union/Find

Richard Anderson, Steve Seitz

Winter 2014

2

Announcements

• Last week of the quarter – lots of

deadlines

• Exam Monday

3

Disjoint Set ADT

• Data: set of pairwise disjoint sets.

• Required operations

– Union – merge two sets to create their union

– Find – determine which set an item appears in

• Each set has a unique name: one of its

members (for convenience)

– {3,5,7} , {4,2,8}, {9}, {1,6}

• 4

Application: Building Mazes

5

Algorithm
• S = set of sets of connected cells

– Initialize to {{1}, {2}, …, {n}}

• W = set of walls
– Initialize to set of all walls {{1,2},{1,7}, …}

• Maze = set of walls in maze (initially empty)

While there is more than one set in S

 Pick a random non-boundary wall (x,y) and remove from W

 u = Find(x);

 v = Find(y);

 if u  v then

 Union(u,v)

 else

 Add wall (x,y) to Maze

Add remaining members of W to Maze

6

Tree-based Approach

Each set is a tree

• Root of each tree is the set name.

• Represent: {3,5,7} , {4,2,8}, {9}, {1,6}

• Support: find(x), union(x,y)

2

7

Up-Tree for DS Union/Find

1 2 3 4 5 6 7 Initial state

1

2

3

4 5

6

7 Intermediate

state

Roots are the names of each set.

Observation: we will only traverse these trees upward
from any given node to find the root.

Idea: reverse the pointers (make them point up from
child to parent). The result is an up-tree.

8

Find Operation

Find(x) follow x to the root and return the root.

1

2

3

4 5

6

7

9

Union Operation

Union(i, j) - assuming i and j roots, point i to j.

1

2

3

4 5

6

7

10

Simple Implementation

• Array of indices

1

2

3

4 5

6

7

1 2 3 4 5 6 7

up

up[x] = -1 means

x is a root.

11

Implementation

int Find(int x) {

 while(up[x] >= 0) {

 x = up[x];

 }

 return x;

}

void Union(int x, int y) {

 assert(up[x]<0 && up[y]<0);

 up[x] = y;

}

runtime for Union: runtime for Find:

Amortized complexity is no better. 12

 A Bad Case

1 2 3 n …

1

2 3 n

Union(1,2)

1

2

3 n

Union(2,3)

Union(n-1,n)

…

…

1

2

3

n

:

:

Find(1) n steps!!

3

13 14

Two Big Improvements

Can we do better? Yes!

1. Union-by-size
• Improve Union so that Find only takes worst

case time of Θ(log n).

2. Path compression
• Improve Find so that, with Union-by-size,

 Find takes amortized time of almost Θ(1).

15

Union-by-Size

Union-by-size

– Always point the smaller tree to the root of the
larger tree

1

2

3

4 5

6

7

S-Union(7,1)

2 4 1

16

Example Again

1 2 3 n

1

2 3 n

S-Union(1,2)

1

2

3

n

S-Union(2,3)

S-Union(n-1,n)

…

… :

:

1

2

3 n

…

Find(1) constant time
…

17

Analysis of Union-by-Size

• Theorem: With union-by-size an up-tree of height h has size

at least 2h.

• Proof by induction

– Base case: h = 0. The up-tree has one node, 20 = 1

– Inductive hypothesis: Assume true for h-1

– Observation: tree gets taller only as a result of a union.

h-1 T1 T2

T = S-Union(T1,T2)

≤h-1

18

Analysis of Union-by-Size

• What is worst case complexity of Find(x) in

an up-tree forest of n nodes?

• (Amortized complexity is no better.)

4

19

Worst Case for Union-by-Size

n/2 Unions-by-size

n/4 Unions-by-size

20

Example of Worst Cast (cont’)

After n -1 = n/2 + n/4 + …+ 1 Unions-by-size

Find
If there are n = 2k nodes then the longest

path from leaf to root has length k.

log2n

21

Array Implementation

1

2

3

4 5

6

7

-1

2

1 -1

1

7 7 5 -1

4

1 2 3 4 5 6 7

up
size

Can store separate size array:

2 4 1

22

Elegant Array Implementation

1

2

3

4 5

6

7

-2 1 -1 7 7 5 -4

1 2 3 4 5 6 7

up

Better, store sizes in the up array:

Negative up-values correspond to sizes of roots.

2 4 1

23

Code for Union-by-Size
S-Union(i,j){

 // Collect sizes

 si = -up[i];

 sj = -up[j];

 // verify i and j are roots

 assert(si >=0 && sj >=0)

 // point smaller sized tree to

 // root of larger, update size

 if (si < sj) {

 up[i] = j;

 up[j] = -(si + sj);

 else {

 up[j] = i;

 up[i] = -(si + sj);

 }

} 24

Path Compression
• To improve the amortized complexity, we’ll introduce a

new idea:

– When going up the tree, improve nodes on the path!

• On a Find operation point all the nodes on the search path
directly to the root. This is called “path compression.”

1

2

3

4 5

6

7 1

2 3 4 5 6

7

PC-Find(3)

8 9

10

8 9 10

5

25

Self-Adjustment Works

PC-Find(x)

x

26

Draw the result of Find(5):

6 8 1

2

3

4

5

7

9

27

Code for Path Compression Find
PC-Find(i) {

 //find root

 j = i;

 while (up[j] >= 0) {

 j = up[j];

 root = j;

 //compress path

 if (i != root) {

 parent = up[i];

 while (parent != root) {

 up[i] = root;

 i = parent;

 parent = up[parent];

 }

 }

 return(root)

}
28

• Worst case time complexity for…

– …a single Union-by-size is:

– …a single PC-Find is:

• Time complexity for m  n operations on n

elements has been shown to be O(m log* n).

 [See Weiss for proof.]

– Amortized complexity is then O(log* n)

– What is log* ?

Complexity of

Union-by-Size + Path Compression

29

log* n

 log* n = number of times you need to apply

 log to bring value down to at most 1

 log* 2 = 1

 log* 4 = log* 22 = 2

 log* 16 = log* 222 = 3 (log log log 16 = 1)

 log* 65536 = log* 2222
 = 4 (log log log log 65536 = 1)

 log* 265536 = …………… ≈ log* (2 x 1019,728) = 5

 log * n ≤ 5 for all reasonable n.

 30

The Tight Bound

In fact, Tarjan showed the time complexity for
m  n operations on n elements is:

 Q(m a(m, n))

Amortized complexity is then Q(a(m, n)) .

What is a(m, n)?

– Inverse of Ackermann’s function.

– For reasonable values of m, n, grows
even slower than log * n. So, it’s even
“more constant.”

Proof is beyond scope of this class. A simple
algorithm can lead to incredibly hardcore
analysis!

