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Announcements 

• Last week of the quarter – lots of 

deadlines 

• Exam Monday 
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Disjoint Set ADT 

• Data: set of pairwise disjoint sets. 

• Required operations 

– Union – merge two sets to create their union 

– Find – determine which set an item appears in 

 

• Each set has a unique name: one of its 

members (for convenience) 

– {3,5,7} , {4,2,8}, {9}, {1,6} 

•   4 

Application: Building Mazes 
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Algorithm 
• S = set of sets of connected cells 

– Initialize to {{1}, {2}, …, {n}} 

• W = set of walls 
– Initialize to set of all walls {{1,2},{1,7}, …} 

• Maze = set of walls in maze (initially empty) 

While there is more than one set in S 

   Pick a random non-boundary wall (x,y) and remove from W 

   u = Find(x); 

   v = Find(y); 

   if u  v then 

      Union(u,v) 

   else 

      Add wall (x,y) to Maze 

Add remaining members of W to Maze 
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Tree-based Approach 

Each set is a tree 

• Root of each tree is the set name. 

 

 

 

 

• Represent:   {3,5,7} , {4,2,8}, {9}, {1,6} 

• Support:  find(x), union(x,y) 
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Up-Tree for DS Union/Find 

1 2 3 4 5 6 7 Initial state 
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Roots are the names of each set. 

Observation: we will only traverse these trees upward 
from any given node to find the root. 

 

Idea: reverse the pointers (make them point up from 
child to parent).  The result is an up-tree. 
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Find Operation 

Find(x) follow x to the root and return the root. 
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Union Operation 

Union(i, j) - assuming i and j roots, point i to j.             
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Simple Implementation 

• Array of indices 

1 

2 

3 

4 5 

6 

7 

1   2    3    4   5    6   7 

up 

up[x] = -1 means 

x is a root. 

11 

Implementation 

int Find(int x) { 

  while(up[x] >= 0) { 

    x = up[x]; 

  } 

  return x; 

} 

void Union(int x, int y) { 

  assert(up[x]<0 && up[y]<0); 

  up[x] = y; 

} 

runtime for Union: runtime for Find: 

Amortized complexity is no better. 12 

 A Bad Case 
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: 

: 

Find(1)   n steps!! 
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Two Big Improvements 

Can we do better?     Yes! 

 

1. Union-by-size 
• Improve Union so that Find only takes worst 

case time of Θ(log n). 

 

2. Path compression 
• Improve Find so that, with Union-by-size,  

     Find takes amortized time of almost Θ(1). 
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Union-by-Size 

Union-by-size 

– Always point the smaller tree to the root of the 
larger tree 
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Example Again 

1 2 3 n 
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S-Union(1,2) 
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… 
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Find(1)   constant time 
… 
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Analysis of Union-by-Size 

• Theorem: With union-by-size an up-tree of height h has size 

at least 2h. 

• Proof by induction 

– Base case: h = 0. The up-tree has one node, 20 = 1 

– Inductive hypothesis: Assume true for h-1 

– Observation: tree gets taller only as a result of a union. 

h-1 T1 T2 

T = S-Union(T1,T2) 

≤h-1 
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Analysis of Union-by-Size 

• What is worst case complexity of Find(x) in 

an up-tree forest of n nodes? 

 

 

 

 

 

• (Amortized complexity is no better.) 
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Worst Case for Union-by-Size 

n/2 Unions-by-size 

 

 

 

n/4 Unions-by-size 
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Example of Worst Cast (cont’) 

After n -1 = n/2 + n/4 + …+ 1 Unions-by-size 

Find 
If there are n = 2k nodes then the longest 

path from leaf to root has length k. 

log2n 
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Array Implementation 
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Can store separate size array: 

2 4 1 
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Elegant Array Implementation 
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Better, store sizes in the up array: 

Negative up-values correspond to sizes of roots. 

2 4 1 
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Code for Union-by-Size 
S-Union(i,j){ 

  // Collect sizes 

  si = -up[i]; 

  sj = -up[j]; 

 

  // verify i and j are roots 

  assert(si >=0 && sj >=0) 

  // point smaller sized tree to 

  // root of larger, update size 

  if (si < sj) { 

    up[i] = j; 

    up[j] = -(si + sj); 

  else { 

    up[j] = i; 

    up[i] = -(si + sj); 

  } 
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Path Compression 
• To improve the amortized complexity, we’ll introduce a 

new idea: 

– When going up the tree, improve nodes on the path! 

• On a Find operation point all the nodes on the search path 
directly to the root.  This is called “path compression.” 
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Self-Adjustment Works 

PC-Find(x) 

x 
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Draw the result of Find(5): 
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Code for Path Compression Find 
PC-Find(i) { 

  //find root 

  j = i; 

   while (up[j] >= 0) {  

    j = up[j]; 

  root = j; 

 

  //compress path 

  if (i != root) { 

    parent = up[i]; 

    while (parent != root) { 

      up[i] = root; 

      i = parent; 

      parent = up[parent]; 

    } 

  } 

  return(root) 

} 
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• Worst case time complexity for… 

– …a single Union-by-size is: 

– …a single PC-Find is:  

 

• Time complexity for m  n operations on n 

elements has been shown to be O(m log* n).   

    [See Weiss for proof.]  

– Amortized complexity is then O(log* n)  

– What is log* ? 

Complexity of  

Union-by-Size + Path Compression 
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log* n 

 log* n = number of times you need to apply 

               log to bring value down to at most 1 

 

    log* 2 = 1 

     log* 4 = log* 22 = 2 

    log* 16 = log* 222 = 3          (log log log 16 = 1) 

    log* 65536 = log* 2222
 = 4   (log log log log 65536 = 1) 

    log* 265536 = …………… ≈ log* (2 x 1019,728) = 5 

 

  log * n ≤ 5 for all reasonable n.  
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The Tight Bound 

In fact, Tarjan showed the time complexity for 
m  n operations on n elements is: 

 Q(m a(m, n))  

Amortized complexity is then Q(a(m, n)) . 

What is a(m, n)? 

– Inverse of Ackermann’s function.   

– For reasonable values of m, n, grows 
even slower than log * n.  So, it’s even 
“more constant.” 

Proof is beyond scope of this class.  A simple 
algorithm can lead to incredibly hardcore 
analysis! 


