CSE 332: Data Structures
Disjoint Set Union/Find

Richard Anderson, Steve Seitz
Winter 2014

Announcements

+ Last week of the quarter — lots of
deadlines

+ Exam Monday

Disjoint Set ADT

Data: set of pairwise disjoint sets.
Required operations

— Union — merge two sets to create their union
— Find — determine which set an item appears in

Each set has a unique name: one of its
members (for convenience)

_{37517} ’ {4121§}1 {Q}, {116}

Application: Building Mazes

E: af%@wr
k o]

-

Algorithm

« S =set of sets of connected cells

— Initialize to {{1}, {2}, ..., {n}}

* W = set of walls

— Initialize to set of all walls {{1,2},{1,7}, ...}

* Maze = set of walls in maze (initially empty)

While there is more than one setin S
Pick a random non-boundary wall (x,y) and remove from W
u = Find(x);
v = Find(y);
if u=vthen
Union(u,v)
else
Add wall (x,y) to Maze
Add remaining members of W to Maze

Tree-based Approach

Each set is a tree
» Root of each tree is the set name.

* Represent: {3,5,7}, {4,2,8}, {9}, {1,6}
» Support: find(x), union(x,y)




Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward
from any given node to find the root.

Idea: reverse the pointers (make them point up from
child to parent). The resultis an up-tree.

Initial state @ @ @ @ @ @ @

Isr:;(i;mediate @% @ ﬂ
@ ® @

Roots are the names of each set. (5 7

Find Operation

Find(x) follow x to the root and return the root.

Union Operation

Union(i, j) - assuming i and j roots, point i to j.

T A

@ ® @

Simple Implementation

+ Array of indices

12 3 45 67 up[x] = -1 means
w[ [ TTT1[] xisaoo

®é> € @é
o

10

Implementation

void Union(int x, int y) { int Find(int x) {
assert (up[x]<0 && up[y]<O0); while (up[x] >= 0) {
up[x] = y; x = up[x];
} }
return x;
}
runtime for Union: runtime for Find:

Amortized complexity is no better.

A Bad Case
®©@ @ ® - ©
Union(1,2)
@ @ P @
é' Union(2,3)
/@ e @ .
6® /.® Union(n-1,n)

©) Find(1) n steps!!




13

Two Big Improvements

Can we do better? Yes!

1. Union-by-size
« Improve Union so that Find only takes worst
case time of O(log n).

2. Path compression
* Improve Find so that, with Union-by-size,
Find takes amortized time of almost ©(1).

14

Union-by-Size

Union-by-size
— Always point the smaller tree to the root of the

larger tree
S-Union(7,1)
2 1 4
@ €
\ s
@ ® @

15

Example Again

© ®@ ® - ®
S-Union(1,2)
(5 @ S—U‘nion(2,3)
o .
S-Union(n-1,n)

6% Find(1) constant time

16

Analysis of Union-by-Size

» Theorem: With union-by-size an up-tree of height h has size
at least 2",

» Proof by induction
— Base case: h = 0. The up-tree has one node, 2°=1
— Inductive hypothesis: Assume true for h-1

— Observation: tree gets taller only as a result of a union.
T = S-Union(Ty,T,)
1 y
= h-1
L 1

17

Analysis of Union-by-Size

* What is worst case complexity of Find(x) in
an up-tree forest of n nodes?

* (Amortized complexity is no better.)

18




Worst Case for Union-by-Size

n/2 Unions-by-size

$68833388

n/4 Unions-by-size

s <% % <%

19

Example of Worst Cast (cont’)

Aftern -1 =n/2 + n/4 + ...+ 1 Unions-by-size

& 1
% (@) % log,n
" Find
If there are n = 2K nodes then the longest
path from leaf to root has length k.

20

Array Implementation

T X

@ ® @

Can store separate size array:
1234567

up |-1]1]-1)7|7]5|-1
size |2 1 4

21

Elegant Array Implementation
2 1 4

@ ®

\ A

@ ® @

Better, store sizes in the up array:

12345617

up [-2[1]-1]7[7]5]-4]

Negative up-values correspond to sizes of roots.

Code for Union-by-Size

S-Union(i,Jj){
// Collect sizes
si = -up[i];
sj = -upl3jl;

// verify i and j are roots
assert(si >=0 && sj >=0)

// point smaller sized tree to
// root of larger, update size
if (si < sj) {

up[i] = j;

up[j] = -(si + s3);
else {

up[j] = i;

up[i] = -(si + sj);

}
} 23

Path Compression

To improve the amortized complexity, we'll introduce a
new idea:

— When going up the tree, improve nodes on the path!

On a Find operation point all the nodes on the search path
directly to the root. This is called “path compression.”

T AL

@ & @ rcrnde @ é)@

f o6  wes

s M




Self-Adjustment Works

=

D AN AN AN AN AN

PC-Find(x)

x

QALY
JIIIIII

Draw the result of Find(5):

26

Code for Path Compression Find

PC-Find (i) {
//£find root
j=1i;
while (up[j] >= 0) {
j = uwpljl;
root = j;

//compress path
if (i !'= root) {
parent = up[i];
while (parent != root) {
up[i] = root;
i = parent;
parent = up[parent];
}
}

return (root)

Complexity of
Union-by-Size + Path Compression

* Worst case time complexity for...
— ...a single Union-by-size is:
—...asingle PC-Find is:

* Time complexity for m > n operations on n
elements has been shown to be O(m log* n).

[See Weiss for proof.]
— Amortized complexity is then O(log* n)
—Whatis log* ?

28

log* n

log* n = number of times you need to apply
log to bring value down to at most 1

logr2=1

log* 4 =log* 22=2

log* 16 = log* 222 = 3 (log log log 16 = 1)

log* 65536 = log* 2222 = 4 (log log log log 65536 = 1)
log* 265536 = ... ........ ~log* (2 x 1019728) = 5

log * n <5 for all reasonable n.

The Tight Bound

In fact, Tarjan showed the time complexity for
m > n operations on n elements is:

O(m a(m, n))
Amortized complexity is then ®(a(m, n)) .
Whatis a(m, n)?
— Inverse of Ackermann’s function.

— For reasonable values of m, n, grows
even slower than log * n. So, it's even
“more constant.”

Proof is beyond scope of this class. A simple
algorithm can lead to incredibly hardcore
analysis! 30




