CSE 332: Disjoint Set Union/Find (part 2)

Richard Anderson, Steve Seitz Winter 2014

Data structure for disjoint sets?

Represent: $\{3, 5, 7\}$, $\{4, 2, 8\}$, $\{9\}$, $\{1, 6\}$

• Support: find(x), union(x,y)

bunch of trees: find O(lgn) union Unlogn)

hash values >> trees find o(i) union O(n)

hashtable value >> set id

(find O(1) by farray maps id >> hit union O(n)

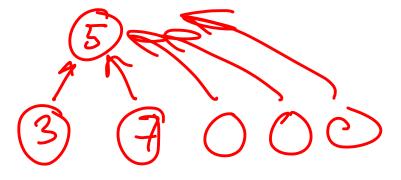
Union/Find Trade-off

- Known result:
 - Find and Union cannot both be done in worstcase O(1) time with any data structure.
- We will instead aim for good amortized complexity.
- For m operations on n elements:
 - Target complexity: O(m) i.e. O(1) amortized

Tree-based Approach

Each set is a tree

Root of each tree is the set name.



Allow large fanout (why?)

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an **up-tree**.

Initial state

2

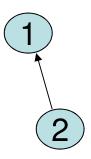
4

5

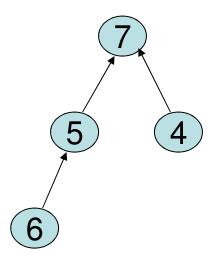
6

7

Intermediate state



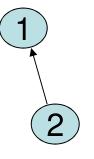
(3)



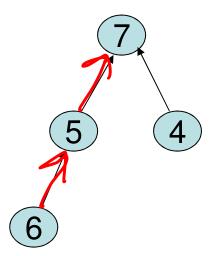
Roots are the names of each set.

Find Operation

Find(x) follow x to the root and return the root.



3



Union Operation

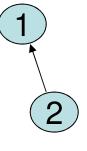
Union(i, j) - assuming i and j roots, point i to j.

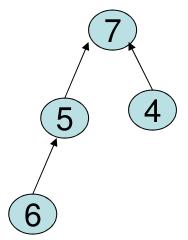


Simple Implementation

Array of indices

up[x] = -1 means x is a root.





Implementation

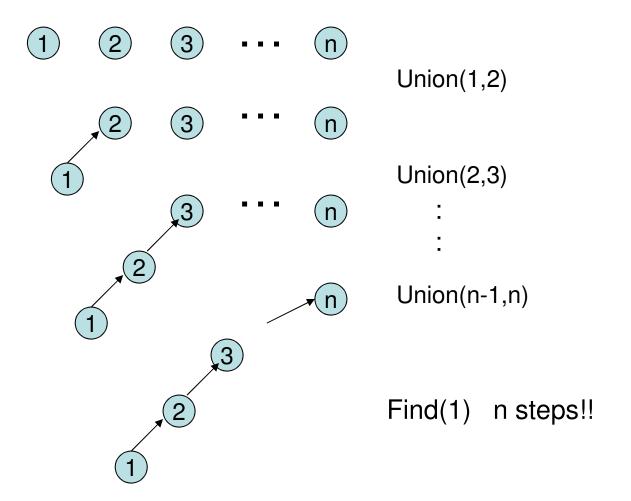
```
void Union(int x, int y) {
  assert(up[x]<0 && up[y]<0);
  up[x] = y;
}</pre>
```

```
int Find(int x) {
   while(up[x] >= 0) {
      x = up[x];
   }
   return x;
}
```

runtime for Union: O(1)

runtime for Find: $\bigcirc(\gamma)$

A Bad Case



after find: make found note point to roof union so point to top make shorter the point to teller root

Two Big Improvements

Can we do better? Yes!

1. Union-by-size

• Improve Union so that *Find* only takes worst case time of $\Theta(\log n)$.

2. Path compression

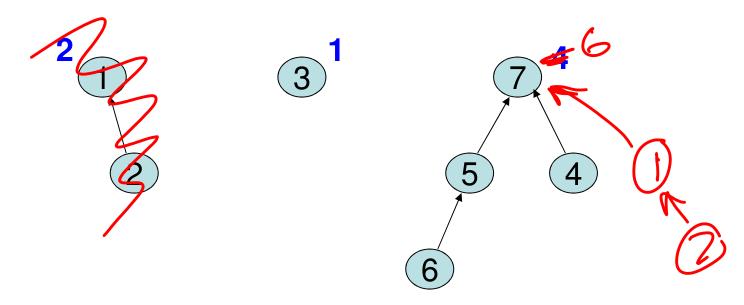
Improve Find so that, with Union-by-size,
 Find takes amortized time of almost Θ(1).

Union-by-Size

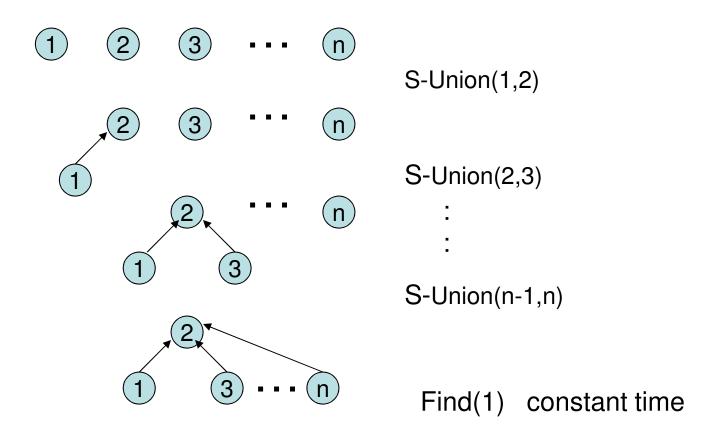
Union-by-size

 Always point the smaller tree to the root of the larger tree

S-Union(7,1)



Example Again



Analysis of Union-by-Size

- Theorem: With union-by-size an up-tree of height h has size at least 2h.
- Proof by induction
 - Base case: h = 0. The up-tree has one node, $2^0 = 1$
 - Inductive hypothesis: Assume true for h-1
 - Observation: tree gets taller only as a result of a union.

$$T = S-Union(T_1,T_2)$$

$$S(T) = S(T_1) + S(T_2)$$

 $\geq 2^{h-1} + 2^{h-1}$
 $= 2^h$

Analysis of Union-by-Size

 What is worst case complexity of Find(x) in an up-tree forest of n nodes?

worst: all nodes in one tall tree of height h

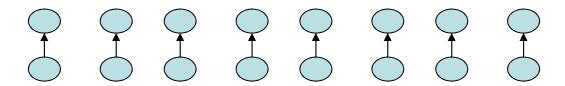
Thm:
$$n \ge 2^h$$
 $\Rightarrow \log_2 n \ge h$

Find $O(\log n)$

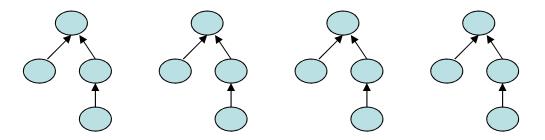
(Amortized complexity is no better.)

Worst Case for Union-by-Size

n/2 Unions-by-size

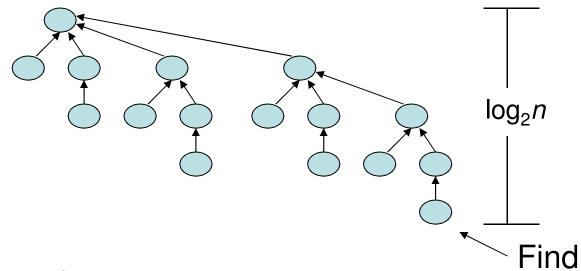


n/4 Unions-by-size



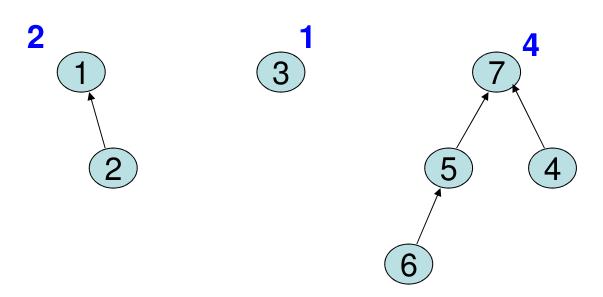
Example of Worst Cast (cont')

After n - 1 = n/2 + n/4 + ... + 1 Unions-by-size



If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.

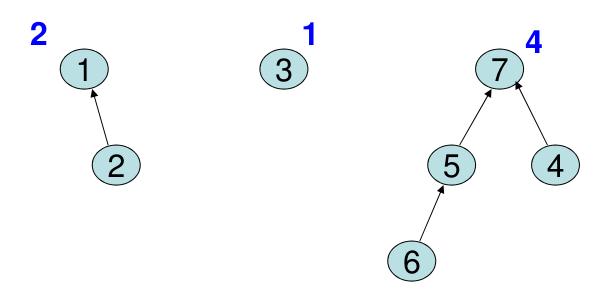
Array Implementation



Can store separate size array:

	1	2	3	4	5	6	7
up	-1	1	-1	7	7	5	<u> </u>
size	2		1				4

Elegant Array Implementation



Better, store sizes in the up array:

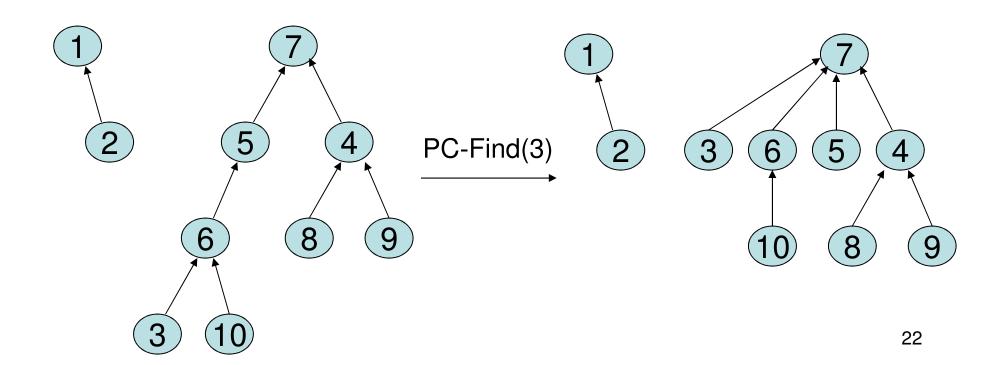
Negative up-values correspond to sizes of roots.

Code for Union-by-Size

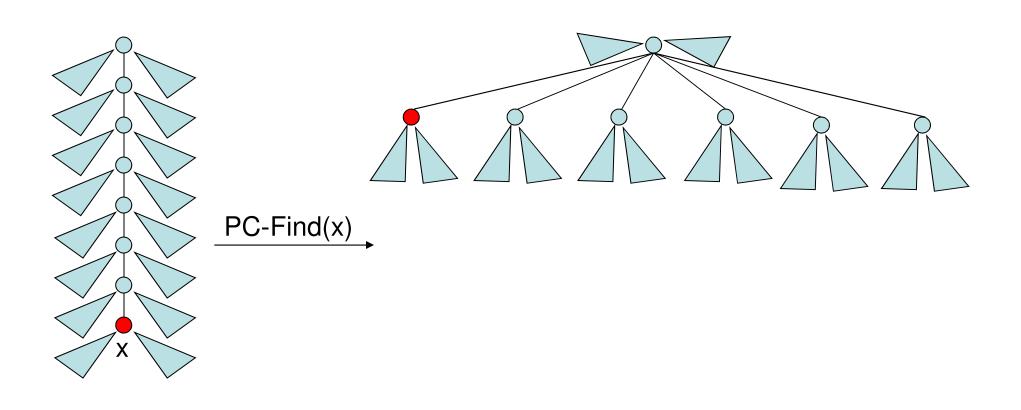
```
S-Union(i, j) {
  // Collect sizes
  si = -up[i];
  sj = -up[j];
  // verify i and j are roots
  assert(si >=0 && sj >=0)
  // point smaller sized tree to
  // root of larger, update size
  if (si < sj) {
    up[i] = j;
    up[j] = -(si + sj);
  else {
    up[j] = i;
    up[i] = -(si + sj);
```

Path Compression

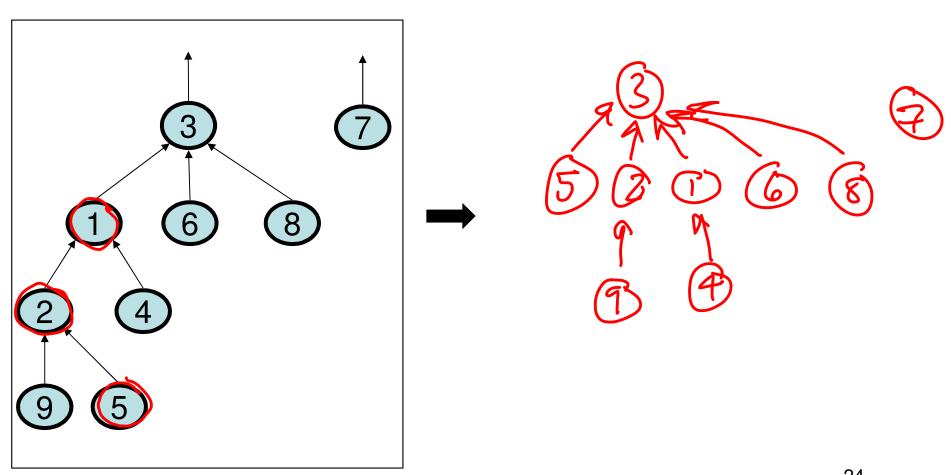
- To improve (amortized) complexity:
 - when going up the tree, improve nodes on the path!
- On a Find operation point all the nodes on the search path directly to the root. This is called "path compression."



Self-Adjustment Works



Draw the result of Find(5):



Code for Path Compression Find

```
PC-Find(i) {
  //find root
  j = i;
 while (up[j] >= 0) {
    j = up[j];
  root = j;
  //compress path
  if (i != root) {
    parent = up[i];
    while (parent != root) {
      up[i] = root;
      i = parent;
      parent = up[parent];
  return (root)
```

Complexity of Union-by-Size + Path Compression

- Worst case time complexity for...

 - ...a single Union-by-size is: O(i)
 ...a single PC-Find is: O(logn)
- Time complexity for m ≥ n operations on n elements has been shown to be $O(m \log^* n)$.
 - [See Weiss for proof.]
 - Amortized complexity is then O(log* n)
 - What is log* ?

log* n

$log^* n = number of times you need to apply log to bring value down to at most 1$

$$\log^* 2 = 1$$

 $\log^* 4 = \log^* 2^2 = 2$
 $\log^* 16 = \log^* 2^{2^2} = 3$ (log log log 16 = 1)
 $\log^* 65536 = \log^* 2^{2^{2^2}} = 4$ (log log log 65536 = 1)
 $\log^* 2^{65536} = \dots \approx \log^* (2 \times 10^{19,728}) = 5$

 $\log * n \le 5$ for all reasonable n.

The Tight Bound

In fact, Tarjan showed the time complexity for $m \ge n$ operations on n elements is:

$$\Theta(m \alpha(m, n))$$

Amortized complexity is then $\Theta(\alpha(m, n))$.

What is $\alpha(m, n)$?

- Inverse of Ackermann's function.
- For reasonable values of *m*, *n*, grows even slower than log * *n*. So, it's even "more constant."

Proof is beyond scope of this class. A simple algorithm can lead to incredibly hardcore analysis!