Data structure for disjoint sets?

- Represent: \{3, 5, 7\}, \{4, 2, 8\}, \{9\}, \{1, 6\}
- Support: \text{find}(x), \text{union}(x,y)

- Bunch of trees: \text{find} \(O(\log n)\), \text{union} \(O(n \log n)\)
- Hash values \rightarrow\text{trees} \text{find} \(O(1)\), \text{union} \(O(n)\)
- Hash table value \rightarrow\text{set id}
 - \text{find} \(O(1)\)
 - Array maps \text{id} \rightarrow \text{list} \text{union} \(O(n)\)
Union/Find Trade-off

• Known result:
 – Find and Union cannot both be done in worst-case $O(1)$ time with any data structure.

• We will instead aim for good amortized complexity.

• For m operations on n elements:
 – Target complexity: $O(m)$ i.e. $O(1)$ amortized
Tree-based Approach

Each set is a tree
- Root of each tree is the set name.

\{3, 5, 7\}

- Allow large fanout (why?)
Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: *reverse* the pointers (make them point up from child to parent). The result is an up-tree.

Initial state

![Initial state diagram](image)

Intermediate state

![Intermediate state diagram](image)

Roots are the names of each set.
Find Operation

Find(x) follow x to the root and return the root.

"Find" of tree

find(6) = 7
Union Operation

Union(i, j) - assuming i and j roots, point i to j.

\(\text{Union}(1, 7) \)
Simple Implementation

- Array of indices

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td>7</td>
<td>7</td>
<td>-1</td>
</tr>
</tbody>
</table>

$up[x] = -1$ means x is a root.
Implementation

```c
void Union(int x, int y) {
    assert (up[x]<0 && up[y]<0);
    up[x] = y;
}

int Find(int x) {
    while(up[x] >= 0) {
        x = up[x];
    }
    return x;
}
```

runtime for Union: \(O(1) \)

runtime for Find: \(O(n) \)

Amortized complexity is no better.
A Bad Case

Find(1) n steps!!
After find: make found note point to roof
union \rightarrow point to top
make shorter line point to tilter note
Two Big Improvements

Can we do better? Yes!

1. Union-by-size
 • Improve Union so that \textit{Find} only takes worst case time of $\Theta(\log n)$.

2. Path compression
 • Improve \textit{Find} so that, with Union-by-size, \textit{Find} takes amortized time of almost $\Theta(1)$.
Union-by-Size

Union-by-size
 – Always point the smaller tree to the root of the larger tree

S-Union(7,1)
Example Again

S-Union(1,2)
S-Union(2,3)
...
S-Union(n-1,n)

Find(1) constant time
Analysis of Union-by-Size

• Theorem: With union-by-size an up-tree of height h has size at least 2^h.

• Proof by induction
 – Base case: $h = 0$. The up-tree has one node, $2^0 = 1$
 – Inductive hypothesis: Assume true for $h-1$
 – Observation: tree gets taller only as a result of a union.

$$S(T) = S(T_1) + S(T_2) \geq 2^{h-1} + 2^{h-1} = 2^h$$
Analysis of Union-by-Size

• What is worst case complexity of Find(x) in an up-tree forest of n nodes?
 worst: all nodes in one tall tree of height h

 Then: $n \geq 2^h$

 $\Rightarrow \log_2 n \geq h$

 $\text{Find } \bigO(\log n)$

• (Amortized complexity is no better.)
Worst Case for Union-by-Size

n/2 Unions-by-size

n/4 Unions-by-size
Example of Worst Cast (cont’)

After $n - 1 = \frac{n}{2} + \frac{n}{4} + \ldots + 1$ Unions-by-size

If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.
Array Implementation

Can store separate size array:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>up</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>-1</td>
</tr>
<tr>
<td>size</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Better, store sizes in the up array:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\text{up} & -2 & 1 & -1 & 7 & 7 & 5 & -4
\end{array}
\]

Negative up-values correspond to sizes of roots.
Code for Union-by-Size

S-Union(i, j) {
 // Collect sizes
 si = -up[i];
 sj = -up[j];

 // verify i and j are roots
 assert(si >= 0 && sj >= 0)
 // point smaller sized tree to
 // root of larger, update size
 if (si < sj) {
 up[i] = j;
 up[j] = -(si + sj);
 } else {
 up[j] = i;
 up[i] = -(si + sj);
 }
}
Path Compression

• To improve (amortized) complexity:
 – when going up the tree, *improve nodes on the path!*
• On a Find operation point all the nodes on the search path directly to the root. This is called “path compression.”

\[\text{PC-Find}(3)\]
Self-Adjustment Works

PC-Find(x)
Draw the result of Find(5):
Code for Path Compression Find

PC-Find(i) {
 // find root
 j = i;
 while (up[j] >= 0) {
 j = up[j];
 root = j;
 }

 // compress path
 if (i != root) {
 parent = up[i];
 while (parent != root) {
 up[i] = root;
 i = parent;
 parent = up[parent];
 }
 }
 return(root)
}
Complexity of Union-by-Size + Path Compression

- Worst case time complexity for…
 - …a single Union-by-size is: $O(1)$
 - …a single PC-Find is: $O(\log^* n)$

- Time complexity for $m \geq n$ operations on n elements has been shown to be $O(m \log^* n)$. [See Weiss for proof.]
 - Amortized complexity is then $O(\log^* n)$
 - What is \log^* ?
log* n

\[\log^* n = \text{number of times you need to apply log to bring value down to at most 1} \]

- \(\log^* 2 = 1 \)
- \(\log^* 4 = \log^* 2^2 = 2 \)
- \(\log^* 16 = \log^* 2^{2^2} = 3 \quad (\log \log \log 16 = 1) \)
- \(\log^* 65536 = \log^* 2^{2^{2^2}} = 4 \quad (\log \log \log \log 65536 = 1) \)
- \(\log^* 2^{65536} = \ldots \ldots \approx \log^* (2 \times 10^{19,728}) = 5 \)

\[\log^* n \leq 5 \text{ for all reasonable } n. \]
The Tight Bound

In fact, Tarjan showed the time complexity for $m \geq n$ operations on n elements is:

$$\Theta(m \alpha(m, n))$$

Amortized complexity is then $\Theta(\alpha(m, n))$.

What is $\alpha(m, n)$?

- Inverse of Ackermann’s function.
- For reasonable values of m, n, grows even slower than $\log^* n$. So, it’s even “more constant.”

Proof is beyond scope of this class. A simple algorithm can lead to incredibly hardcore analysis!