Announcements

- Reading for this lecture: Chapter 8.

Edsger Wybe Dijkstra was one of the most influential members of computing science’s founding generation. Among the domains in which his scientific contributions are fundamental are:
- algorithm design
- programming languages
- program design
- operating systems
- distributed processing
- formal specification and verification
- design of mathematical arguments

Dijkstra’s Algorithm

Assume all edges have non-negative cost

S = \{\}; \quad d[s] = 0; \quad d[v] = \infty \text{ for } v \neq s

While \(S \neq V \)

Choose \(v \) in \(V - S \) with minimum \(d[v] \)

Add \(v \) to \(S \)

For each \(w \) in the neighborhood of \(v \)

\[d[w] = \min(d[w], d[v] + c(v, w)) \]

Simulate Dijkstra’s algorithm (starting from \(s \)) on the graph

http://www.cs.utexas.edu/users/EWD/

Edsger Wybe Dijkstra was one of the most influential members of computing science’s founding generation. Among the domains in which his scientific contributions are fundamental are:

- algorithm design
- programming languages
- program design
- operating systems
- distributed processing
- formal specification and verification
- design of mathematical arguments

Dijkstra’s Algorithm

\[
\begin{align*}
S &= \emptyset; & d[s] &= 0; & d[v] &= \infty \text{ for } v \neq s \\
\text{While } S \neq V \\
& \quad \text{Choose } v \text{ in } V - S \text{ with minimum } d[v] \\
& \quad \text{Add } v \text{ to } S \\
& \quad \text{For each } w \text{ in the neighborhood of } v \\
& \quad \quad d[w] = \min(d[w], d[v] + c(v, w))
\end{align*}
\]
Correctness Proof

- Elements in S have the correct label
- Key to proof: when v is added to S, it has the correct distance label.

\[\text{Proof} \]

- Let v be a vertex in V-S with minimum \(d[v] \)
- Let \(P_v \) be a path of length \(d[v] \), with an edge \((u,v) \)
- Let \(P \) be some other path to v. Suppose \(P \) first leaves S on the edge \((x, y) \)
 - \(P = P_{xy} + c(x,y) + P_{yv} \)
 - \(\text{Len}(P_{xy}) + c(x,y) \geq d[y] \)
 - \(\text{Len}(P_{yv}) \geq 0 \)
 - \(\text{Len}(P) \geq d[y] + 0 \geq d[v] \)

Union-Find Data Structure

- ADT Definition
- How it’s implemented with pointers
- Optimizations
- Results of analysis
 - (Some of the strangest mathematics in CS)

Making Connections

You have a set of nodes (numbered 1-9) on a network. You are given a sequence of pairwise connections between them:

\[3-5 \]
\[4-2 \]
\[1-6 \]
\[5-7 \]
\[4-8 \]
\[3-7 \]

Q: Are nodes 2 and 4 (indirectly) connected?
Q: How about nodes 3 and 8?
Q: Are any of the paired connections redundant due to indirect connections?
Q: How many sub-networks do you have?

Applications of Disjoint Sets

Maintaining disjoint sets in this manner arises in a number of areas, including:
- Networks
- Transistor interconnects
- Compilers
- Image segmentation
- Building mazes (this lecture)
- Graph problems
 - Minimum Spanning Trees (upcoming topic in this class)
Disjoint Set ADT

- Data: set of pairwise disjoint sets.
- Required operations
 - Union – merge two sets to create their union
 - Find – determine which set an item appears in
- A common operation sequence:
 - Connect two elements if not already connected:
 if (Find(x) != Find(y)) then Union(x,y)

Disjoint Sets and Naming

- Maintain a set of pairwise disjoint sets.
 - {3,5,7} , {4,2,8}, {9}, {1,6}
- Each set has a unique name: one of its members (for convenience)
 - {3,5,7} , {4,2,8}, {9}, {1,6}

Union

- Union(x,y) – take the union of two sets named x and y
 - {3,5,7} , {4,2,8}, {9}, {1,6}
 - Union(5,1)
 {3,5,7,1,6}, {4,2,8}, {9},

Find

- Find(x) – return the name of the set containing x.
 - {3,5,7,1,6}, {4,2,8}, {9},
 - Find(1) = 5
 - Find(4) = 8

Example

S
{1,2,7,8,9,13,19}
{3}
{5}
{9}
{10}
{11,17}
{14,20,26,27}
{15,16,21}
{-}
{22,23,24,29,39,32,33,34,35,36}

Find(8) = 7
Find(14) = 20
Union(7,20)

S
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{5}
{9}
{10}
{11,17}
{14,20,26,27}
{15,16,21}
{-}
{22,23,24,29,39,32,33,34,35,36}

Nifty Application: Building Mazes

Idea: Build a random maze by erasing walls.
Building Mazes

- Pick Start and End

Desired Properties

- None of the boundary is deleted (except at “start” and “end”).
- Every cell is reachable from every other cell.
- There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.

A Cycle

A Good Solution

A Hidden Tree
Number the Cells

We start with disjoint sets $S = \{ \{1\}, \{2\}, \{3\}, \{4\}, \ldots, \{36\} \}$. We have all possible walls between neighbors $W = \{(1,2), (1,7), (2,8), (2,3), \ldots\}$. 60 walls total.

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

End

Idea: Union-find operations will be done on cells.

Maze Building with Disjoint Union/Find

Algorithm sketch:
1. Choose wall at random.
 - Boundary walls are not in wall list, so left alone
2. Erase wall if the neighbors are in disjoint sets.
 - Avoids cycles
3. Take union of those sets.
4. Go to 1, iterate until there is only one set.
 - Every cell reachable from every other cell.

Pseudocode

- $S =$ set of sets of connected cells
 - Initialize to $\{\{1\}, \{2\}, \ldots, \{n\}\}$
- $W =$ set of walls
 - Initialize to set of all walls $\{(1,2), (1,7), \ldots\}$
- Maze = set of walls in maze (initially empty)

While there is more than one set in S

1. Pick a random non-boundary wall (x,y) and remove from W
2. $u =$ Find(x);
3. $v =$ Find(y);
4. If $u \neq v$ then
5. Union(u,v)
6. Else
7. Add wall (x,y) to Maze
8. Add remaining members of W to Maze

Example Step

Pick (8,14)

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

End

Example

Find(8) = 7
Find(14) = 20
Union(7,20)

Example

Pick (19,20)

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

End

Example

Pick (19,20)

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

End

Example

Pick (19,20)
Data structure for disjoint sets?

- Represent: \(\{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}\)
- Support: find(x), union(x,y)

Tree-based Approach

Each set is a tree
- Root of each tree is the set name.

- Allow large fanout (why?)

Find Operation

Find(x) follow x to the root and return the root.

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an up-tree.

Find Operation

Find(x) follow x to the root and return the root.
Union Operation

Union(i, j) - assuming i and j roots, point i to j.

Simple Implementation

• Array of indices

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
</tbody>
</table>

up[x] = -1 means x is a root.

Implementation

```c
int Find(int x) {
    while (up[x] >= 0) {
        x = up[x];
    }
    return x;
}

void Union(int x, int y) {
    assert(up[x]<0 && up[y]<0);
    up[x] = y;
}
```

runtime for Union: runtime for Find:

Amortized complexity is no better.

A Bad Case

Find(1) takes almost \(\Theta(1) \) steps!!

Two Big Improvements

Can we do better? Yes!

1. Union-by-size
 • Improve Union so that Find only takes worst case time of \(\Theta(\log n) \).

2. Path compression
 • Improve Find so that, with Union-by-size, Find takes amortized time of almost \(\Theta(1) \).
Union-by-Size

Union-by-size
– Always point the smaller tree to the root of the larger tree
S-Union(7, 1)

Example Again

Example Again

S-Union(1, 2)

S-Union(2, 3)

S-Union(n-1, n)

Find(1) constant time

Analysis of Union-by-Size

• Theorem: With union-by-size an up-tree of height h has size at least 2^h.
• Proof by induction
 – Base case: $h = 0$. The up-tree has one node, $2^0 = 1$
 – Inductive hypothesis: Assume true for $h-1$
 – Observation: tree gets taller only as a result of a union.

Worst Case for Union-by-Size

n/2 Unions-by-size

n/4 Unions-by-size

Worst Case for Union-by-Size

Example of Worst Case (cont’)

Analysis of Union-by-Size

• What is worst case complexity of Find(x) in an up-tree forest of n nodes?
• (Amortized complexity is no better.)

Example of Worst Case (cont’)

After $n - 1 = n/2 + n/4 + \ldots + 1$ Unions-by-size

If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.
Array Implementation

Can store separate size array:

```
 1 2 3 4 5 6 7
up: -1 -1 -7 7 5 -1
size: 2 1 1 4
```

Elegant Array Implementation

Better, store sizes in the up array:

```
 1 2 3 4 5 6 7
up: -2 1 -1 7 7 5 -4
```

Negative up-values correspond to sizes of roots.

Code for Union-by-Size

```c
S-Union(i,j){
    // Collect sizes
    si = -up[i];
    sj = -up[j];
    // verify i and j are roots
    assert(si >=0 && sj >=0)
    // point smaller sized tree to
    // root of larger, update size
    if (si < sj) {
        up[i] = j;
        up[j] = -(si + sj);
    } else {
        up[j] = i;
        up[i] = -(si + sj);
    }
}
```

Path Compression

- To improve the amortized complexity, we’ll borrow an idea from splay trees:
 - When going up the tree, **improve nodes on the path**!
- On a Find operation point all the nodes on the search path directly to the root. This is called “path compression.”

Self-Adjustment Works

Draw the result of Find(5):
Code for Path Compression Find

```c
PC-Find(i) {
    // find root
    j = i;
    while (up[j] >= 0) {
        j = up[j];
        root = j;
    }
    // compress path
    if (i != root) {
        parent = up[i];
        while (parent != root) {
            up[i] = root;
            i = parent;
            parent = up[parent];
        }
    }
    return(root)
}
```

Complexity of Union-by-Size + Path Compression

- Worst case time complexity for...
 - ...a single Union-by-size is:
 - ...a single PC-Find is:

- Time complexity for \(m \geq n \) operations on \(n \) elements has been shown to be \(O(m \log^* n) \).
 [See Weiss for proof.]
 - Amortized complexity is then \(O(\log^* n) \)
 - What is \(\log^* \)?

The Tight Bound

In fact, Tarjan showed the time complexity for \(m \geq n \) operations on \(n \) elements is:

\[
\Theta(m \alpha(m, n))
\]

Amortized complexity is then \(\Theta(\alpha(m, n)) \).

What is \(\alpha(m, n) \)?

- Inverse of Ackermann’s function.
- For reasonable values of \(m, n \), grows even slower than \(\log^* n \). So, it’s even “more constant.”

Proof is beyond scope of this class. A simple algorithm can lead to incredibly hardcore analysis!

\[\log^* n \]

\(\log^* n = \) number of times you need to apply \(\log \) to bring value down to at most 1

\[
\begin{align*}
\log^* 2 &= 1 \\
\log^* 4 &= \log^* 2^2 = 2 \\
\log^* 16 &= \log^* 2^{2^2} = 3 \\
\log^* 65536 &= \log^* 2^{2^{2^2}} = 4 \\
\log^* 2^{65536} &= \ldots \ldots \ldots \approx \log^* (2 \times 10^{19,728}) = 5
\end{align*}
\]

\(\log^* n \leq 5 \) for all reasonable \(n \).