Announcements (3/5/14)

- HW 7 due today
- HW 8 out today
- Reading for this lecture: Chapter 9.

Wrapping up concurrency

Locking a Hashtable

- Consider a hashtable with
 - many simultaneous lookup operations
 - rare insert operations
- What’s the right locking strategy?

Read vs. Write Locks

- Recall race conditions
 - two simultaneous write to same location
 - one write, one simultaneous read
- But two simultaneous reads OK
- Synchronize is too strict
 - blocks simultaneous reads

Readers/Writer Locks

A new synchronization ADT: The readers/writer lock

- A lock’s states fall into three categories:
 - “not held”
 - “held for writing” by one thread
 - “held for reading” by one or more threads
- new: make a new lock, initially “not held”
- acquire_write: block if currently “held for reading” or “held for writing”, else make “held for writing”
- release_write: make “not held”
- acquire_read: block if currently “held for writing”, else make/keep “held for reading” and increment readers count
- release_read: decrement readers count, if 0, make “not held”
In Java

• Java's `synchronized` statement does not support readers/writer

• Instead, library
 • `java.util.concurrent.locks.ReentrantReadWriteLock`

• Different interface: methods `readLock` and `writeLock` return objects that themselves have `lock` and `unlock` methods

Concurrency Summary

• Parallelism is powerful, but introduces new concurrency issues:
 – Data races
 – Interleaving
 – Deadlocks

• Requires synchronization
 – Locks for mutual exclusion

• Guidelines for correct use help avoid common pitfalls

Back to graph theory

Graphs

• A formalism for representing relationships between objects

 – Graph \(G = (V,E) \)

 – Set of vertices: \(V = \{v_1, v_2, \ldots, v_n\} \)

 – Set of edges: \(E = \{e_1, e_2, \ldots, e_m\} \)

 where each \(e_i \) connects one vertex to another \((v_j, v_k) \)

• For directed edges, \((v_j, v_k) \) and \((v_k, v_j) \) are distinct.

 (More on this later…)

Paths and connectivity

The Shortest Path Problem

Given a graph \(G \), and vertices \(s \) and \(t \) in \(G \), find the shortest path from \(s \) to \(t \).

Two cases: weighted and unweighted.

For a path \(p = v_0, v_1, v_2, \ldots, v_k \)

 – unweighted length of path \(p = k \) (a.k.a. length)

 – weighted length of path \(p = \sum_{i=0}^{k-1} c_{i,i+1} \) (a.k.a. cost)
Single Source Shortest Paths (SSSP)

Given a graph \(G \) and vertex \(s \), find the shortest paths from \(s \) to all vertices in \(G \).

– How much harder is this than finding single shortest path from \(s \) to \(t \)?

Variations of SSSP

– Weighted vs. unweighted
– Directed vs undirected
– Cyclic vs. acyclic
– Positive weights only vs. negative weights allowed
– Shortest path vs. longest path
– …

Applications

– Network routing
– Driving directions
– Cheap flight tickets
– Critical paths in project management
 (see textbook)
– …

SSSP: Unweighted Version

```cpp
void Graph::unweighted (Vertex s){
    Queue q(NUM_VERTICES);
    Vertex v, w;
    q.enqueue(s);
    s.dist = 0;
    while (!q.isEmpty()){
        v = q.dequeue();
        for each w adjacent to v
            if (w.dist == INFINITY){
                w.dist = v.dist + 1;
                w.prev = v;
                q.enqueue(w);
            }
    }
}
```

total running time: \(O(\quad) \)

![Graph](image)
Weighted SSSP:

All edges are not created equal

Can we calculate shortest distance to all vertices from Allen Center?

Dijkstra’s Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:

- Known
 • shortest distance is already known
- Unknown
 • Have tentative distance

Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown vertex
2) Add it to known vertices
3) Update distances

Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to ∞
Initialize the cost of the source to 0

While there are unknown vertices left in the graph
Select an unknown vertex a with the lowest cost
Mark a as known
For each vertex b adjacent to a
 newcost = cost(a) + cost(a, b)
 if (newcost < cost(b))
 cost(b) = newcost
 previous(b) = a

Important Features

- Once a vertex is known, the cost of the shortest path to that vertex is known
- While a vertex is still unknown, another shorter path to it might still be found
- The shortest path can found by following the previous pointers stored at each vertex

<table>
<thead>
<tr>
<th>V</th>
<th>Known?</th>
<th>Cost</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra’s Alg: Implementation

Initialize the cost of each vertex to ∞
Initialize the cost of the source to 0
While there are unknown vertices left in the graph
 Select the unknown vertex a with the lowest cost
 Mark a as known
 For each vertex b adjacent to a
 newcost = min(cost(b), cost(a) + cost(a, b))
 if newcost < cost(b)
 cost(b) = newcost
 previous(b) = a

What data structures should we use?

Running time?

Dijkstra’s Algorithm: Summary

• Classic algorithm for solving SSSP in weighted graphs without negative weights
• A greedy algorithm (irrevocably makes decisions without considering future consequences)
• Why does it work?

Correctness: The Cloud Proof

Prove by induction on # of nodes in the cloud:
Initial cloud is just the source with shortest path 0
Assume: Everything inside the cloud has the correct shortest path
Inductive step: by argument on previous slide, we can safely add min-cost vertex to cloud

When does Dijkstra’s algorithm not work?

Negative Weights?

How does Dijkstra’s decide which vertex to add to the Known set next?
• If path to V is shortest, path to W must be at least as long (or else we would have picked W as the next vertex)
• So the path through W to V cannot be any shorter!

Dijkstra for BFS

• You can use Dijkstra’s algorithm for BFS
• Is this a good idea?