
2/25/2014

1

1

CSE 332: Parallel Sorting II

Richard Anderson, Steve Seitz

Winter 2014

2

Announcements

• Project 3 Part A due Thursday night

3

Review: Parallel prefix

Sum [0,7]:

Sum [0,3]: Sum [4,7]:

Sum [0,1]: Sum [2,3]: Sum [4,5]: Sum [5,7]:

6 3 11 10 8 2 7 8

4

2nd Pass:
Passing partial sums back down

Sum [0,7]:

Sum<0:

Sum [0,3]:

Sum<0:

Sum [4,7]:

Sum<4:

Sum [0,1]:

Sum<0:

Sum [2,3]:

Sum<2:

Sum [4,5]:

Sum<4:

Sum [6,7]:

Sum<6:

6 3 11 10 8 2 7 8

5

Parallel Prefix

Work: O(n)

Span: O(log n)

Applies to any associative operation

 A + (B + C) = (A + B) + C

Example: Pack

1. Map to 0-1 indicator vector for property

2. Compute prefix sum of indicator vector

3. Move elements to locations in result vector

6

Sequential Quicksort

Quicksort (review):

1. Pick a pivot O(1)

2. Partition into two sub-arrays O(n)

A. values less than pivot

B. values greater than pivot

3. Recursively sort A and B 2T(n/2), avg

Complexity (avg case)
– T(n) = n + 2T(n/2) T(0) = T(1) = 1

– O(n logn)

How to parallelize?

2/25/2014

2

7

Parallel Quicksort

Quicksort

1. Pick a pivot O(1)

2. Partition into two sub-arrays O(n)

A. values less than pivot

B. values greater than pivot

3. Recursively sort A and B in parallel T(n/2), avg

Complexity (avg case)
– T(n) = n + T(n/2) T(0) = T(1) = 1

– Span: O()

– Parallelism (work/span) = O()

8

Taking it to the next level…

• O(log n) speed-up with infinite processors is okay, but

a bit underwhelming

– Sort 109 elements 30x faster

• Bottleneck:

9

Parallel Partition

Partition into sub-arrays
A. values less than pivot

B. values greater than pivot

What parallel operation can we use for this?

10

Parallel Partition

• Pick pivot

• Pack (test: <6)

• Right pack (test: >=6)

8 1 4 9 0 3 5 2 7 6

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

11

Parallel Quicksort

Quicksort

1. Pick a pivot O(1)

2. Partition into two sub-arrays O() span

A. values less than pivot

B. values greater than pivot

3. Recursively sort A and B in parallel T(n/2), avg

Complexity (avg case)
– T(n) = O() + T(n/2) T(0) = T(1) = 1

– Span: O()

– Parallelism (work/span) = O()

12

Sequential Mergesort

Mergesort (review):

1. Sort left and right halves 2T(n/2)

2. Merge results O(n)

Complexity (worst case)
– T(n) = n + 2T(n/2) T(0) = T(1) = 1

– O(n logn)

How to parallelize?
– Do left + right in parallel, improves to O(n)

– To do better, we need to…

2/25/2014

3

13

Parallel Merge

How to merge two sorted lists in parallel?

0 4 6 8 9 1 2 3 5 7

14

Parallel Merge

1. Choose median M of left half O()

2. Split both arrays into < M, >=M O()

– how?

0 4 6 8 9 1 2 3 5 7

M

15

Parallel Merge

1. Choose median M of left half

2. Split both arrays into < M, >=M

– how?

3. Do two submerges in parallel

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge

6 8 9 7

merge

16

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge

6 8 9 7

merge

0 4 1 2 3 5 8 9

0 4 1 2 3 5 9

merge merge merge

0 4 1 2 3 5

0 4 1 2 3 5

merge merge

0 4 1 2 3 5 9 6 8 7

8

6 7

6 7

6 7

6 7

9 8

9 8

17

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge

6 8 9 7

merge

0 4 1 2 3 5 8 9

0 4 1 2 3 5 9

merge merge merge

0 4 1 2 3 5

0 4 1 2 3 5

merge merge

0 4 1 2 3 5 9 6 8 7

8

6 7

6 7

6 7

6 7

9 8

9 8

When we do each merge in parallel:

we split the bigger array in half

use binary search to split the smaller array

And in base case we copy to the output array

18

Parallel Mergesort Pseudocode

Merge(arr[], left1, left2, right1, right2, out[], out1, out2)

 int leftSize = left2 – left1

 int rightSize = right2 – right1

 // Assert: out2 – out1 = leftSize + rightSize

 // We will assume leftSize > rightSize without loss of generality

 if (leftSize + rightSize < CUTOFF)

 sequential merge and copy into out[out1..out2]

 int mid = (left2 – left1)/2

 binarySearch arr[right1..right2] to find j such that

 arr[j] ≤ arr[mid] ≤ arr[j+1]

 Merge(arr[], left1, mid, right1, j, out[], out1, out1+mid+j)

 Merge(arr[], mid+1, left2, j+1, right2, out[], out1+mid+j+1, out2)

2/25/2014

4

19

Analysis

Parallel Merge (worst case)

– Height of partition call tree with n elements: O()

– Complexity of each thread (ignoring recursive call): O()

– Span: O()

Parallel Mergesort (worst case)

– Span: O()

– Parallelism (work / span): O()

Subtlety: uneven splits

– but even in worst case, get a 3/4 to 1/4 split

– still gives O(log n) height

0 4 6 8 1 2 3 5

20

Parallel Quicksort vs. Mergesort

Parallelism (work / span)
– quicksort: O(n / log n) avg case

– mergesort: O(n / log2 n) worst case

21

CSE 332: Concurrency

Richard Anderson, Steve Seitz

Winter 2014

Really sharing memory between Threads

Heap for all objects

and static fields, shared

by all threads
2 Threads, each with own unshared

call stack and “program counter”

pc=0x…

…

pc=0x…

…

11/18/2013 22

Banking
Two threads both trying to withdraw(100) from the same account:

• Assume initial balance 150

class BankAccount {

 private int balance = 0;

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 }

 … // other operations like deposit, etc.

}

x.withdraw(100);

Thread 1

x.withdraw(100);

Thread 2

23

A bad interleaving

Interleaved withdraw(100) calls on the same account

– Assume initial balance == 150

• How to fix?

24

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

2/25/2014

5

Concurrent Programming

Concurrency:

 Correctly and efficiently managing access to shared

resources from multiple possibly-simultaneous clients

Requires coordination, particularly
– synchronization to avoid incorrect simultaneous access:

– make others block (wait) until the resource is free

Concurrent applications are often non-deterministic
– how threads are scheduled affects what operations happen first

– non-repeatability complicates testing and debugging

25

Concurrency Examples

What if we have multiple threads:

1. Processing different bank-account operations

– What if 2 threads change the same account at the same time?

2. Using a shared cache (e.g., hashtable) of recent files

– What if 2 threads insert the same file at the same time?

3. Creating a pipeline (think assembly line) with a queue for handing

work from one thread to next thread in sequence?

– What if enqueuer and dequeuer adjust a circular array queue

at the same time?

26

Why threads?

Unlike parallelism, not about implementing algorithms faster

But threads still useful for:

• Code structure for responsiveness

– Example: Respond to GUI events in one thread while

another thread is performing an expensive computation

• Processor utilization (mask I/O latency)

– If 1 thread “goes to disk,” have something else to do

• Failure isolation

– Convenient structure if want to interleave multiple tasks and

do not want an exception in one to stop the other

27 11/18/2013

Sharing, again

It is common in concurrent programs that:

• Different threads might access the same resources in an

unpredictable order or even at about the same time

• Program correctness requires that simultaneous access be

prevented using synchronization

• Simultaneous access is rare

– Makes testing difficult

– Must be much more disciplined when designing /

implementing a concurrent program

– Will discuss common idioms known to work

28 11/18/2013

