
1

CSE 332: Parallel Sorting

Richard Anderson, Steve Seitz

Winter 2014

2

Announcements

• Project 3 PartA due Thursday night

3

Recap

Last week

– simple parallel programs

– common patterns: map, reduce

– analysis tools (work, span, parallelism)

– Amdahl’s Law

Now

– parallel quicksort, merge sort

– useful building blocks: prefix, pack

4

Parallelizable?

Fibonacci (N)

5

Parallelizable?

Prefix-sum:

������[�] = ∑ �	���[�]
��

input

output

6 3 11 10 8 2 7 8

6

First Pass: Sum

6 3 11 10 8 2 7 8

Sum [0,7]:

7

First Pass: Sum

Sum [0,7]:

Sum [0,3]: Sum [4,7]:

Sum [0,1]: Sum [2,3]: Sum [4,5]: Sum [5,7]:

6 3 11 10 8 2 7 8

8

2nd Pass: Use Sum for Prefix-Sum

Sum [0,7]: 55

Sum<0:

Sum [0,3]: 30

Sum<0:

Sum [4,7]: 25

Sum<4:

Sum [0,1]: 9

Sum<0:

Sum [2,3]: 21
Sum<2:

Sum [4,5]: 10

Sum<4:

Sum [6,7]: 15

Sum<6:

6 3 11 10 8 2 7 8

9

2nd Pass: Use Sum for Prefix-Sum
Sum [0,7]:

Sum<0:

Sum [0,3]:

Sum<0:

Sum [4,7]:

Sum<4:

Sum [0,1]:

Sum<0:

Sum [2,3:

Sum<2:
Sum [4,5]:

Sum<4:

Sum [6,7]:

Sum<6:

6 3 11 10 8 2 7 8

Go from root down to leaves

Root

– sum<0 =

Left-child

– sum<K =

Right-child

– sum<K =

10

Prefix-Sum Analysis

• First Pass (Sum):

– span =

• Second Pass:

– single pass from root down to leaves

• update children’s sum<K value based on parent and sibling

– span =

• Total

– span =

11

Parallel Prefix, Generalized

Prefix-sum is another common pattern (prefix problems)

– maximum element to the left of i

– is there an element to the left of i i satisfying some property?

– count of elements to the left of i satisfying some property

– …

We can solve all of these problems in the same way

12

Pack

Pack:

Output array of elements satisfying test, in original order

input

output

6 3 11 10 8 2 7 8 test: X < 8?

13

Parallel Pack?

Pack

•Determining which elements to include is easy

•Determining where each element goes in output is hard

– seems to depend on previous results

input

output 6 3 2 7

6 3 11 10 8 2 7 8 test: X < 8?

14

Parallel Pack

input

test 1 1 0 0 0 1 1 0

6 3 11 10 8 2 7 8 test: X < 8?

1. map test input, output [0,1] bit vector

15

Parallel Pack

input

test 1 1 0 0 0 1 1 0

6 3 11 10 8 2 7 8 test: X < 8?

1. map test input, output [0,1] bit vector

2. transform bit vector into array of indices into result array

1 2 3 4pos

16

Parallel Pack

input

test 1 1 0 0 0 1 1 0

6 3 11 10 8 2 7 8 test: X < 8?

1. map test input, output [0,1] bit vector

2. prefix-sum on bit vector

1 2 2 2 2 3 4 4

3. map input to corresponding positions in output

pos

6 3 2 7

- if (test[i] == 1) output[pos[i]] = input[i]

output

17

Parallel Pack Analysis

• Parallel Pack

1. map: O() span

2. sum-prefix: O() span

3. map: O() span

• Total: O() span

18

Sequential Quicksort

Quicksort (review):

1. Pick a pivot O(1)

2. Partition into two sub-arrays O(n)

A. values less than pivot

B. values greater than pivot

3. Recursively sort A and B 2T(n/2), avg

Complexity (avg case)
– T(n) = n + 2T(n/2) T(0) = T(1) = 1

– O(n logn)

How to parallelize?

19

Parallel Quicksort

Quicksort

1. Pick a pivot O(1)

2. Partition into two sub-arrays O(n)

A. values less than pivot

B. values greater than pivot

3. Recursively sort A and B in parallel T(n/2), avg

Complexity (avg case)
– T(n) = n + T(n/2) T(0) = T(1) = 1

– Span: O()

– Parallelism (work/span) = O()

20

Taking it to the next level…

• O(log n) speed-up with infinite processors is okay, but

a bit underwhelming

– Sort 109 elements 30x faster

• Bottleneck:

21

Parallel Partition

Partition into sub-arrays
A. values less than pivot

B. values greater than pivot

What parallel operation can we use for this?

22

Parallel Partition

• Pick pivot

• Pack (test: <6)

• Right pack (test: >=6)

8 1 4 9 0 3 5 2 7 6

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

23

Parallel Quicksort

Quicksort

1. Pick a pivot O(1)

2. Partition into two sub-arrays O() span

A. values less than pivot

B. values greater than pivot

3. Recursively sort A and B in parallel T(n/2), avg

Complexity (avg case)
– T(n) = O() + T(n/2) T(0) = T(1) = 1

– Span: O()

– Parallelism (work/span) = O()

24

Sequential Mergesort

Mergesort (review):

1. Sort left and right halves 2T(n/2)

2. Merge results O(n)

Complexity (worst case)
– T(n) = n + 2T(n/2) T(0) = T(1) = 1

– O(n logn)

How to parallelize?
– Do left + right in parallel, improves to O(n)

– To do better, we need to…

25

Parallel Merge

How to merge two sorted lists in parallel?

0 4 6 8 9 1 2 3 5 7

26

Parallel Merge

1. Choose median M of left half O()

2. Split both arrays into < M, >=M O()

– how?

0 4 6 8 9 1 2 3 5 7

M

27

Parallel Merge

1. Choose median M of left half

2. Split both arrays into < M, >=M

– how?

3. Do two submerges in parallel

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge

6 8 9 7

merge

28

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge

6 8 9 7

merge

0 4 1 2 3 5 8 9

0 41 2 3 5 9

mergemerge merge

0 41 2 3 5

0 41 2 3 5

merge merge

0 41 2 3 5 96 87

8

6 7

6 7

6 7

6 7

98

98

29

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge

6 8 9 7

merge

0 4 1 2 3 5 8 9

0 41 2 3 5 9

mergemerge merge

0 41 2 3 5

0 41 2 3 5

merge merge

0 41 2 3 5 96 87

8

6 7

6 7

6 7

6 7

98

98

When we do each merge in parallel:

�we split the bigger array in half

�use binary search to split the smaller array

�And in base case we copy to the output array

30

Parallel Mergesort Pseudocode

Merge(arr[], left1, left2, right1, right2, out[], out1, out2)

int leftSize = left2 – left1

int rightSize = right2 – right1

// Assert: out2 – out1 = leftSize + rightSize

// We will assume leftSize > rightSize without loss of generality

if (leftSize + rightSize < CUTOFF)

sequential merge and copy into out[out1..out2]

int mid = (left2 – left1)/2

binarySearch arr[right1..right2] to find j such that

arr[j] ≤ arr[mid] ≤ arr[j+1]

Merge(arr[], left1, mid, right1, j, out[], out1, out1+mid+j)

Merge(arr[], mid+1, left2, j+1, right2, out[], out1+mid+j+1, out2)

31

Analysis

Parallel Merge (worst case)

– Height of partition call tree with n elements: O()

– Complexity of each thread (ignoring recursive call): O()

– Span: O()

Parallel Mergesort (worst case)

– Span: O()

– Parallelism (work / span): O()

Subtlety: uneven splits

– but even in worst case, get a 3/4 to 1/4 split

– still gives O(log n) height

0 4 6 8 1 2 3 5

32

Parallel Quicksort vs. Mergesort

Parallelism (work / span)
– quicksort: O(n / log n) avg case

– mergesort: O(n / log2 n) worst case

