CSE 332: Parallel Sorting

Richard Anderson, Steve Seitz Winter 2014

Announcements

• Project 3 PartA due Thursday night

Recap

Last week

- simple parallel programs
- common patterns: map, reduce
- analysis tools (work, span, parallelism)
- Amdahl's Law

Now

- parallel quicksort, merge sort
- useful building blocks: prefix, pack

Parallelizable?

Parallelizable?

Prefix-sum:

 $output[i] = \sum_{0}^{i-1} input[i]$

First Pass: Sum

Sum [0,7]:**S**

6	3	11	10	8	2	7	8
---	---	----	----	---	---	---	---

First Pass: Sum

2nd Pass: Use Sum for Prefix-Sum

2nd Pass: Use Sum for Prefix-Sum

Go from root down to leaves

Root

Prefix-Sum Analysis

- First Pass (Sum):
 - $\text{span} = \mathcal{O}(\log n)$
- Second Pass:
 - single pass from root down to leaves
 - update children's sum<K value based on parent and sibling

$$- \text{span} = O(\log n)$$

• Total $- \text{span} = O(\log n)$

Parallel Prefix, Generalized

Prefix-sum is another common pattern (prefix problems)

- maximum element to the left of i
- is there an element to the left of i i satisfying some property?
- count of elements to the left of i satisfying some property

- ...

We can solve all of these problems in the same way

Pack

Pack:

Output array of elements satisfying test, in original order

Parallel Pack?

Pack

- •Determining which elements to include is easy
- •Determining where each element goes in output is hard
 - seems to depend on previous results

Parallel Pack

1. map test input, output [0,1] bit vector

input	6	3	11	10	8	2	7	8	test:	Χ <	< 8?
test	1	1	0	0	0	1	1	0			

Parallel Pack

1. map test input, output [0,1] bit vector

2. transform bit vector into array of indices into result array

pos

Parallel Pack

1. map test input, output [0,1] bit vector

test: X < 8?

2. prefix-sum on bit vector

6

pos 1 2	2	2	2	3	4	4
---------	---	---	---	---	---	---

3. map input to corresponding positions in output

output

- if (test[i] == 1) output[pos[i]] = input[i]

Parallel Pack Analysis

- Parallel Pack
 - 1. map: O() span
 - 2. sum-prefix: O() span
 - 3. map: O() span
- Total: O() span

Sequential Quicksort

Quicksort (review):

- 1. Pick a pivot
- 2. Partition into two sub-arrays
 - A. values less than pivot
 - B. values greater than pivot
- 3. Recursively sort A and B

- T(n) = n + 2T(n/2) T(0) = T(1) = 1
- O(n logn)

How to parallelize?

O(1) O(n)

2T(n/2), avg

Parallel Quicksort

Quicksort

1. Pick a pivot	O(1)
2. Partition into two sub-arrays	O(n)
A. values less than pivot	
B. values greater than pivot	
3. Recursively sort A and B in parallel	T(n/2), avg

Complexity (avg case)

- T(n) = n + T(n/2) T(0) = T(1) = 1
- Span: O()
- Parallelism (work/span) = O(

Taking it to the next level...

- O(log n) speed-up with infinite processors is okay, but a bit underwhelming
 - Sort 10⁹ elements 30x faster
- Bottleneck:

Parallel Partition

Partition into sub-arrays

- A. values less than pivot
- B. values greater than pivot

What parallel operation can we use for this?

Parallel Partition

• Pick pivot

• Pack (test: <6)

1	4	0	3	5	2				
---	---	---	---	---	---	--	--	--	--

• Right pack (test: >=6)

Parallel Quicksort

Quicksort

1. Pick a pivot	O(1)		
2. Partition into two sub-arrays	O() span		
A. values less than pivot			
B. values greater than pivot			
3. Recursively sort A and B in parallel	T(n/2), avg		

Complexity (avg case)

- T(n) = O() + T(n/2) T(0) = T(1) = 1
- Span: O()
- Parallelism (work/span) = O(

Sequential Mergesort

Mergesort (review):

- 1. Sort left and right halves
- 2. Merge results

Complexity (worst case)

- T(n) = n + 2T(n/2) T(0) = T(1) = 1
- O(n logn)

How to parallelize?

- Do left + right in parallel, improves to O(n)
- To do better, we need to...

2T(n/2) O(n)

Parallel Merge

How to merge two sorted lists in parallel?

Parallel Merge

- 1. Choose median M of left half O(
- 2. Split both arrays into < M, >=M

- how?

)

O(

Parallel Merge

- 1. Choose median M of left half
- 2. Split both arrays into < M, >=M

– how?

3. Do two submerges in parallel

When we do each merge in parallel:
we split the bigger array in half
use binary search to split the smaller array
And in base case we copy to the output array

Parallel Mergesort Pseudocode

Merge(arr[], left₁, left₂, right₁, right₂, out[], out₁, out₂)

int leftSize = $left_2 - left_1$

int rightSize = right₂ - right₁

// Assert: out₂ - out₁ = leftSize + rightSize

// We will assume leftSize > rightSize without loss of generality

```
if (leftSize + rightSize < CUTOFF)
```

sequential merge and copy into out[out1..out2]

```
int mid = (left_2 - left_1)/2
```

binarySearch arr[right1..right2] to find j such that

 $arr[j] \le arr[mid] \le arr[j+1]$

Merge(arr[], left₁, mid, right₁, j, out[], out₁, out₁+mid+j) Merge(arr[], mid+1, left₂, j+1, right₂, out[], out₁+mid+j+1, out₂)

Analysis

Parallel Merge (worst case)

- Height of partition call tree with n elements: O()
- Complexity of each thread (ignoring recursive call): O(
- Span: O(

Parallel Mergesort (worst case)

- Span: O(
- Parallelism (work / span): O(

Subtlety: uneven splits

- but even in worst case, get a 3/4 to 1/4 split
 - still gives O(log n) height

Parallel Quicksort vs. Mergesort

Parallelism (work / span)

- quicksort: $O(n / \log n)$ avg case
- mergesort: $O(n / \log^2 n)$ worst case