Fork-Join Parallelism

1. Define thread
 - Java: define subclass of `java.lang.Thread`, override `run`

2. Fork: instantiate a thread and start executing
 - Java: create thread object, call `start()`

3. Join: wait for thread to terminate
 - Java: call `join()` method, which returns when thread finishes

Above uses basic thread library build into Java
Later we'll introduce a better ForkJoin Java library designed for parallel programming

Sum with Threads

For starters: have 4 threads simultaneously sum ¼ of the array

- Create 4 thread objects, each given ¼ of the array
- Call `start()` on each thread object to run it in parallel
- Wait for threads to finish using `join()`
- Add together their 4 answers for the final result

Part 1: define thread class

```java
class SumThread extends java.lang.Thread {
    int lo; // fields, passed to constructor
    int hi; // so threads know what to do.
    int[] arr;
    int ans = 0; // result
    SumThread(int[] a, int l, int h) {
        lo=l; hi=h; arr=a;
    }
    public void run() { //override must have this type
        for(int i=lo; i < hi; i++)
            ans += arr[i];
    }
}
```

Because we must override a no-arguments/no-result `run`,
we use fields to communicate across threads

Part 2: sum routine

```java
int sum(int[] arr){ // can be a static method
    int len = arr.length;
    int ans = 0;
    SumThread[] ts = new SumThread[4];
    for(int i=0; i < 4; i++){ // do parallel computations
        ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
        ts[i].start();
    }
    for(int i=0; i < 4; i++) {
        ts[i].join(); // wait for helper to finish!
        ans += ts[i].ans;
    }
    return ans;
}
```
Parameterizing by number of threads

```java
int sum(int[] arr, int numTs){
    int ans = 0;
    SumThread[] ts = new SumThread[numTs];
    for(int i=0; i < numTs; i++)
        ts[i] = new SumThread(arr,(i*arr.length)/numTs,
                               ((i+1)*arr.length)/numTs); // result
        ans += ts[i].ans;
    return ans;
}
```

Code looks something like this (using Java Threads)

```java
class SumThread extends java.lang.Thread {
    int lo; int hi; int[] arr; // fields to know what to do
    public void run() { // override
        if(hi - lo < SEQUENTIAL_CUTOFF)
            ans += arr[lo];
        else {
            SumThread left = new SumThread(arr,lo,(hi+lo)/2);
            SumThread right = new SumThread(arr,(hi+lo)/2,hi); // don't move this up a line - why?
            left.start();
            right.start();
            ans = left.ans + right.ans;
        }
    }
    int sum(int[] arr){ // just make one thread!
        SumThread t = new SumThread(arr,0,arr.length);
        t.run();
        return t.ans;
    }
}
```

Recall: Parallel Sum

- Sum up N numbers in an array

![Parallel Sum Diagram](image_url)

Let's implement this with threads...

```
Thread: sum range [0,5)
Thread: sum range [0,2)
Thread: sum range [2,3) (return arr[2])
Thread: sum range [1,2) (return arr[1])
Thread: sum range [0,1) (return arr[0])
Thread: sum range [3,5)
Thread: sum range [2,5) (return arr[4])
Thread: sum range [3,4) (return arr[3])
Thread: sum range [4,5) (return arr[4])
Thread: sum range [0,5) + results from two helper threads
Thread: sum range [5,7) (return arr[5])
Thread: sum range [5,6) (return arr[6])
Thread: sum range [6,7) (return arr[6])
Thread: sum range [7,10) + results from two helper threads
Thread: sum range [8,10) (return arr[9])
Thread: sum range [9,10) (return arr[9])
Thread: sum range [5,10) + results from two helper threads
Thread: sum range [2,10) + results from two helper threads
Thread: sum range [0,10) + results from two helper threads
Thread: sum range [0,10) + results from two helper threads
Thread: sum range [0,10) + results from two helper threads
Thread: sum range [0,10) + results from two helper threads
```

```
Recursive problem decomposition

Example: summing an array with 10 elements. (too small to actually want to use parallelism)
```

Thread Overhead

Creating and managing threads incurs cost

Two optimizations:

1. Use a sequential cutoff, typically around 500-1000
 - Eliminates lots of tiny threads

2. Do not create two recursive threads; create one thread and do the other piece of work "yourself"
 - Cuts the number of threads created by another 2x

```
Divide-and-conquer

Same approach useful for many problems beyond sum
- If you have enough processors, total time O(log n)
- Next lecture: study reality of P << n processors
```

- Will write all our parallel algorithms in this style
 - But using a special fork-join library engineered for this style
 - Takes care of scheduling the computation well
 - Often relies on operations being associative (like +)
Halft the threads! order of last 4 lines is critical — why?

```java
// wasteful: don’t SumThread right = ...
left.start();
right.start();
left.join();
right.join();
ans = left.ans + right.ans;
// better: do!!
SumThread left = ...
SumThread right = ...
left.start();
right.run();
left.join();
// no right.join needed
ans = left.ans + right.ans;
```

Better Java Thread Library

- Even with all this care, Java’s threads are too “heavyweight”
 - Constant factors, especially space overhead
 - Creating 20,000 Java threads just a bad idea

- The ForkJoin Framework is designed to meet the needs of divide-and-conquer fork-join parallelism
 - In the Java 7 standard libraries
 - (Also available for Java 6 as a downloaded .jar file)
 - Section will focus on pragmatics/logistics
 - Similar libraries available for other languages
 - C/C++: Cilk (inventors), Intel’s Thread Building Blocks
 - C#: Task Parallel Library
 - ...

Better Java Thread Library

```java
class SumArray extends RecursiveTask<Integer> {
    int lo; int hi; int[] arr; // fields to know what to do
    protected Integer compute() {
        if (hi - lo < SEQUENTIAL_CUTOFF) {
            int ans = 0; // local var, not a field
            for (int i = lo; i < hi; i++)
                ans += arr[i];
            return ans;
        } else {
            SumArray left = new SumArray(arr, lo, (hi+lo)/2);
            SumArray right = new SumArray(arr, (hi+lo)/2, hi);
            int leftAns = left.join(); // call compute directly
            int rightAns = right.compute(); // call compute directly
            return leftAns + rightAns;
        }
    }
    static final ForkJoinPool fjp = new ForkJoinPool();
    public static int sum(int[] arr) {
        return fjp.invoke(new SumArray(arr, 0, arr.length));
    }
}
```

Fork Join Framework Version:

Different terms, same basic idea

To use the ForkJoin Framework:
- A little standard set-up code (e.g., create a ForkJoinPool)
 - Don’t subclass Thread
 - Don’t override run
 - Do not use an ans field
 - Don’t call start
 - Don’t just call join
 - Don’t call run to hand-optimize
 - Don’t have a topmost call to run
 - Do subclass RecursiveTask<T>
 - Do override compute
 - Do return a T from compute
 - Do call fork
 - Do call join (which returns answer)
 - Do call compute to hand-optimize
 - Do create a pool and call invoke

See the web page for (linked in to project 3 description):
“ A Beginner’s Introduction to the ForkJoin Framework”

Parallel Sum

- Sum up N numbers in an array

Parallel Max?
Reductions

- Same trick works for many tasks, e.g.,
 - is there an element satisfying some property (e.g., prime)
 - left-most element satisfying some property (e.g., first prime)
 - smallest rectangle encompassing a set of points (proj3)
 - counts: number of strings that start with a vowel
 - are these elements in sorted order?

- Called a reduction, or reduce operation
 - reduce a collection of data items to a single item
 - result can be more than a single value, e.g., produce histogram from a set of test scores

- Very common parallel programming pattern

Parallel Vector Scaling

- Multiply every element in the array by 2

Maps

- A map operates on each element of a collection of data to produce a new collection of the same size
 - each element is processed independently of the others, e.g.
 - vector scaling
 - vector addition
 - test property of each element (is it prime)
 - uppercase to lowercase
 - another common parallel programming pattern

Maps and Reductions

Maps and reductions: the “workhorses” of parallel programming
 - By far the most important and common patterns
 - Learn to recognize when an algorithm can be written in terms of maps and reductions
 - makes parallel programming easy (plug and play)

Distributed Map Reduce

- You may have heard of Google’s map/reduce
 - or open-source version called Hadoop
 - powers much of Google’s infrastructure

- Idea: maps/reductions using many machines
 - same principles, applied to distributed computing
 - system takes care of distributing data, fault-tolerance
 - you just write code to handle one element, reduce a collection

- Co-developed by Jeff Dean (UW alum!)
Maps and Reductions on Trees

- Max value in a min-heap

How to parallelize?
Is this a map or a reduce?
Complexity?

Analyzing Parallel Programs

Let T_P be the running time on P processors

Two key measures of run-time:
- **Work**: How long it would take 1 processor = T_1
- **Span**: How long it would take infinity processors = T_∞
 - The hypothetical ideal for parallelization
 - This is the longest "dependence chain" in the computation
 - Example: $O(\log n)$ for summing an array
 - Also called "critical path length" or "computational depth"

The DAG

- Fork-join programs can be modeled with a DAG
 - nodes: pieces of work
 - edges: order dependencies

A fork creates two children
- new thread
- continuation of current thread

A join makes a node with two incoming edges
- terminated thread
- continuation of current thread

What’s T_1 (work):
What’s T_∞ (span):

Divide and Conquer Algorithms

Our fork and join frequently look like this:

In this context, the span (T_∞) is:
- The longest dependence-chain, longest "branch" in parallel "tree"
- Example: $O(\log n)$ for summing an array; we halve the data down to our cut-off, then add back together; $O(\log n)$ steps, $O(1)$ time for each
- Also called "critical path length" or "computational depth"

Parallel Speed-up

- **Speed-up** on P processors: T_1 / T_P
- If speed-up is P, we call it perfect linear speed-up
 - e.g., doubling P halves running time
 - hard to achieve in practice

- **Parallelism** is the maximum possible speed-up: T_1 / T_∞
 - if you had infinite processors