
1

CSE 332:
Analysis of Fork-Join Parallel

Programs

Richard Anderson, Steve Seitz

Winter 2014

Parallel Sum

• Sum up N numbers in an array

2

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + + + + + + + + + +

Parallel Max?

3

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + + + + + + + + + +

Reductions

• Same trick works for many tasks, e.g.,
– is there an element satisfying some property (e.g., prime)

– left-most element satisfying some property (e.g., first prime)

– smallest rectangle encompassing a set of points (proj3)

– counts: number of strings that start with a vowel

– are these elements in sorted order?

• Called a reduction, or reduce operation

– reduce a collection of data items to a single item

• result can be more than a single value, e.g., produce
histogram from a set of test scores

• Very common parallel programming pattern

4

Parallel Vector Scaling

5

• Multiply every element in the array by 2

Maps

• A map operates on each element of a collection of

data to produce a new collection of the same size

– each element is processed independently of the others, e.g.
• vector scaling

• vector addition

• test property of each element (is it prime)

• uppercase to lowercase

• ...

• Another common parallel programming pattern

6

Maps in ForkJoin Framework

• Even though there is no result-combining, it still

helps with load balancing to create many small

tasks

– Maybe not for vector-add but for more compute-

intensive maps

– The forking is O(log n) whereas theoretically other

approaches to vector-add is O(1)

7

class VecAdd extends RecursiveAction {
int lo; int hi; int[] res; int[] arr1; int[] arr2;
VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … }
protected void compute(){
if(hi – lo < SEQUENTIAL_CUTOFF) {
for(int i=lo; i < hi; i++)
res[i] = arr1[i] + arr2[i];

} else {
int mid = (hi+lo)/2;
VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
left.fork();
right.compute();
left.join();

}
}

}
static final ForkJoinPool fjPool = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
int[] ans = new int[arr1.length];
fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
return ans;

}

Maps and Reductions

Maps and reductions: the “workhorses” of parallel

programming

– By far the most important and common patterns

– Learn to recognize when an algorithm can be written in terms
of maps and reductions

– makes parallel programming easy (plug and play)

8

Distributed Map Reduce

• You may have heard of Google’s map/reduce

– or open-source version called Hadoop

– powers much of Google’s infrastructure

• Idea: maps/reductions using many machines

– same principles, applied to distributed computing

– system takes care of distributing data, fault-tolerance

– you just write code to handle one element, reduce a
collection

• Co-developed by Jeff Dean (UW alum!)

9

Maps and Reductions on Trees

• Max value in a min-heap

• How to parallelize?

• Is this a map or a reduce?

• Complexity?
10

996040

1520

10

50 700

85

65

Analyzing Parallel Programs

Let TP be the running time on P processors

Two key measures of run-time:

• Work: How long it would take 1 processor = T1

• Span: How long it would take infinity processors = T
∞∞∞∞

– The hypothetical ideal for parallelization

– This is the longest “dependence chain” in the computation

– Example: O(log n) for summing an array

– Also called “critical path length” or “computational depth”

11

The DAG

• Fork-join programs can be modeled with a DAG
– nodes: pieces of work

– edges: order dependencies

What’s T1 (work):

What’s T
∞∞∞∞

(span): 12

A fork creates two children

• new thread

• continuation of current thread

A join makes a node with two

incoming edges

• terminated thread

• continuation of current thread

Divide and Conquer Algorithms

Our fork and join frequently look like this:

base cases

divide

combine

results

In this context, the span (T
∞
) is:

•The longest dependence-chain; longest ‘branch’ in parallel ‘tree’

•Example: O(log n) for summing an array; we halve the data down to our cut-

off, then add back together; O(log n) steps, O(1) time for each

•Also called “critical path length” or “computational depth”

13

Parallel Speed-up

• Speed-up on P processors: T1 / TP

• If speed-up is P, we call it perfect linear speed-up

– e.g., doubling P halves running time

– hard to achieve in practice

• Parallelism is the maximum possible speed-up: T1 / T
∞∞∞∞

– if you had infinite processors

14

Estimating Tp

• How to estimate TP (e.g., P = 4)?

• Lower bounds on TP (ignoring memory, caching...)

1. T
∞∞∞∞

2. T1 / P

– which one is the tighter (higher) lower bound?

• The ForkJoin Java Framework achieves the following

expected time asymptotic bound:

TP ϵ O(T
∞∞∞∞

+ T1 / P)
– this bound is optimal

15

Amdahl’s Law

• Most programs have

1. parts that parallelize well

2. parts that don’t parallelize at all

• The latter become bottlenecks

16

Amdahl’s Law

• Let T1 = 1 unit of time

• Let S = proportion that can’t be parallelized

1 = T1 = S + (1 – S)

• Suppose we get perfect linear speedup on the parallel portion:

TP =

• So the overall speed-up on P processors is (Amdahl’s Law):

T1 / T P =

T1 / T
∞∞∞∞

=

• If 1/3 of your program is parallelizable, max speedup is:

17

Pretty Bad News

• Suppose 25% of your program is sequential.

– Then a billion processors won’t give you more than a 4x
speedup!

• What portion of your program must be parallelizable

to get 10x speedup on a 1000 core GPU?

– 10 <= 1 / (S + (1-S)/1000)

• Motivates minimizing sequential portions of your

programs

18

Take Aways

• Parallel algorithms can be a big win

• Many fit standard patterns that are easy to implement

• Can’t just rely on more processors to make things

faster (Amdahl’s Law)

19

