CSE 332: Analysis of Fork-Join Parallel Programs

Richard Anderson, Steve Seitz
Winter 2014
Parallel Sum

- Sum up N numbers in an array
Parallel Max?
Reductions

• Same trick works for many tasks, e.g., \((a + b) + c = a + (b + c)\)
 – is there an element satisfying some property (e.g., prime)
 – left-most element satisfying some property (e.g., first prime)
 – smallest rectangle encompassing a set of points (proj3)
 – counts: number of strings that start with a vowel
 – are these elements in sorted order?

• Called a reduction, or reduce operation
 – reduce a collection of data items to a single item
 • result can be more than a single value, e.g., produce histogram from a set of test scores

• Very common parallel programming pattern
Parallel Vector Scaling

- Multiply every element in the array by 2

N proc (threads) multiply each separately then chart
Maps

• A map operates on each element of a collection of data to produce a new collection of the same size
 – each element is processed independently of the others, e.g.
 • vector scaling
 • vector addition
 • test property of each element (is it prime)
 • uppercase to lowercase
 • ...

• Another common parallel programming pattern
Maps in ForkJoin Framework

class VecAdd extends RecursiveAction {
 int lo; int hi; int[] res; int[] arr1; int[] arr2;
 VecAdd(int l, int h, int[] r, int[] a1, int[] a2) { ... }
 protected void compute() {
 if (hi - lo < SEQUENTIAL_CUTOFF) {
 for (int i = lo; i < hi; i++)
 res[i] = arr1[i] + arr2[i];
 } else {
 int mid = (hi + lo) / 2;
 VecAdd left = new VecAdd(lo, mid, res, arr1, arr2);
 VecAdd right = new VecAdd(mid, hi, res, arr1, arr2);
 left.fork();
 right.compute();
 left.join();
 }
 }
}

static final ForkJoinPool fjPool = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2) {
 assert (arr1.length == arr2.length);
 int[] ans = new int[arr1.length];
 fjPool.invoke(new VecAdd(0, arr.length, ans, arr1, arr2);
 return ans;
}
Maps and Reductions

Maps and reductions: the “workhorses” of parallel programming

– By far the most important and common patterns

– Learn to recognize when an algorithm can be written in terms of maps and reductions

– makes parallel programming easy (plug and play)
Distributed Map Reduce

• You may have heard of Google’s map/reduce
 – or open-source version called Hadoop
 – powers much of Google’s infrastructure

• Idea: maps/reductions using many machines
 – same principles, applied to distributed computing
 – system takes care of distributing data, fault-tolerance
 – you just write code to handle one element, reduce a collection

• Co-developed by Jeff Dean (UW alum!)
Maps and Reductions on Trees

- Max value in a min-heap

- How to parallelize?
- Is this a map or a reduce?
- Complexity? $O(\log N)$
Analyzing Parallel Programs

Let T_p be the running time on P processors

Two key measures of run-time:

- **Work**: How long it would take 1 processor = T_1
- **Span**: How long it would take infinity processors = T_∞
 - The hypothetical ideal for parallelization
 - This is the longest “dependence chain” in the computation
 - Example: $O(\log n)$ for summing an array
 - Also called “critical path length” or “computational depth”
The DAG

• Fork-join programs can be modeled with a DAG
 – nodes: pieces of work
 – edges: order dependencies

A fork creates two children
 • new thread
 • continuation of current thread

A join makes a node with two incoming edges
 • terminated thread
 • continuation of current thread

What’s T_1 (work): sum of all nodes

What’s T_∞ (span): longest path
Divide and Conquer Algorithms

Our fork and join frequently look like this:

In this context, the span \((T_\infty)\) is:

- The longest dependence-chain; longest ‘branch’ in parallel ‘tree’
- Example: \(O(\log n)\) for summing an array; we halve the data down to our cut-off, then add back together; \(O(\log n)\) steps, \(O(1)\) time for each
- Also called “critical path length” or “computational depth”
Parallel Speed-up

• Speed-up on P processors: $\frac{T_1}{T_P}$

• If speed-up is P, we call it perfect linear speed-up
 – e.g., doubling P halves running time
 – hard to achieve in practice

• Parallelism is the maximum possible speed-up: $\frac{T_1}{T_\infty}$
 – if you had infinite processors
Estimating T_p

- How to estimate T_p (e.g., $P = 4$)?

- Lower bounds on T_p (ignoring memory, caching...)
 1. T_∞
 2. T_1 / P
 - which one is the tighter (higher) lower bound?

- The ForkJoin Java Framework achieves the following expected time asymptotic bound:
 $$T_p \in O(T_\infty + T_1 / P)$$
 - this bound is optimal
Amdahl’s Law

• Most programs have
 1. parts that parallelize well
 2. parts that don’t parallelize at all

• The latter become bottlenecks
Amdahl’s Law

• Let $T_1 = 1$ unit of time
• Let $S =$ proportion that can’t be parallelized

$$1 = T_1 = S + (1 - S)$$

• Suppose we get perfect linear speedup on the parallel portion:

$$T_P =$$

• So the overall speed-up on P processors is (Amdahl’s Law):

$$T_1 / T_P =$$

$$T_1 / T_\infty =$$

• If $1/3$ of your program is parallelizable, max speedup is:
• Suppose 25% of your program is sequential.
 – Then a billion processors won’t give you more than a 4x speedup!

• What portion of your program must be parallelizable to get 10x speedup on a 1000 core GPU?
 – $10 \leq \frac{1}{S + (1-S)/1000}$

• Motivates minimizing sequential portions of your programs
Take Aways

• Parallel algorithms can be a big win

• Many fit standard patterns that are easy to implement

• Can’t just rely on more processors to make things faster (Amdahl’s Law)