CSE 332: Analysis of Fork-Join Parallel Programs

Richard Anderson, Steve Seitz Winter 2014

Parallel Sum

• Sum up N numbers in an array

Parallel Max?

Reductions

- Same trick works for many tasks, e.g., = a + (b+c)
 - is there an element satisfying some property (e.g., prime)
 - left-most element satisfying some property (e.g., first prime)
 - smallest rectangle encompassing a set of points (proj3)
 - counts: number of strings that start with a vowel
 - are these elements in sorted order?
- Called a reduction, or reduce operation
 - reduce a collection of data items to a single item
 - result can be more than a single value, e.g., produce histogram from a set of test scores
- Very common parallel programming pattern

Parallel Vector Scaling

• Multiply every element in the array by 2

Z

22/24 N proc (threads) multiply each separately then churt

Maps

- A map operates on each element of a collection of data to produce a new collection of the same size
 - each element is processed independently of the others, e.g.
 - vector scaling
 - vector addition
 - test property of each element (is it prime)
 - uppercase to lowercase
 - ...
- Another common parallel programming pattern

Maps in ForkJoin Framework

```
class VecAdd extends RecursiveAction {
  int lo; int hi; int[] res; int[] arr1; int[] arr2;
 VecAdd(int l, int h, int[] r, int[] a1, int[] a2) { ... }
 protected void compute() {
    if(hi - lo < SEQUENTIAL_CUTOFF) {</pre>
      for(int i=lo; i < hi; i++)</pre>
        res[i] = arr1[i] + arr2[i];
    } else {
      int mid = (hi+lo)/2;
      VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
      VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
      left.fork();
      right.compute();
      left.join();
static final ForkJoinPool fjPool = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2){
  assert (arr1.length == arr2.length);
  int[] ans = new int[arr1.length];
  fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
 return ans;
```

Maps and Reductions

Maps and reductions: the "workhorses" of parallel programming

- By far the most important and common patterns
- Learn to recognize when an algorithm can be written in terms of maps and reductions
- makes parallel programming easy (plug and play)

Distributed Map Reduce

- You may have heard of Google's map/reduce
 - or open-source version called Hadoop
 - powers much of Google's infrastructure
- Idea: maps/reductions using many machines
 - same principles, applied to distributed computing
 - system takes care of distributing data, fault-tolerance
 - you just write code to handle one element, reduce a collection
- Co-developed by Jeff Dean (UW alum!)

Maps and Reductions on Trees

Max value in a min-heap

- How to parallelize?
- Is this a map or a reduce? reduce
- Complexity? ○(log N)

Analyzing Parallel Programs

Let $\mathbf{T}_{\mathbf{P}}$ be the running time on \mathbf{P} processors

Two key measures of run-time:

- Work: How long it would take 1 processor = T₁
- Span: How long it would take infinity processors = T_∞
 - The hypothetical ideal for parallelization
 - This is the longest "dependence chain" in the computation
 - Example: O(log n) for summing an array
 - Also called "critical path length" or "computational depth"

The DAG

- Fork-join programs can be modeled with a DAG
 - nodes: pieces of work
 - edges: order dependencies

Divide and Conquer Algorithms

Our **fork** and **join** frequently look like this:

In this context, the span (T_{∞}) is:

The longest dependence-chain; longest 'branch' in parallel 'tree'
Example: O(log n) for summing an array; we halve the data down to our cut-off, then add back together; O(log n) steps, O(1) time for each
Also called "critical path length" or "computational depth"

Parallel Speed-up

- Speed-up on P processors: T₁ / T_P
- If speed-up is **P**, we call it perfect linear speed-up \checkmark
 - e.g., doubling **P** halves running time
 - hard to achieve in practice
- Parallelism is the maximum possible speed-up: T_1 / T_{∞}
 - if you had infinite processors

Estimating T_p

- How to estimate $\mathbf{T}_{\mathbf{P}}$ (e.g., $\mathbf{P} = 4$)?
- Lower bounds on T_P (ignoring memory, caching...)
 1. T_∞
 - 2. T₁ / P
 - which one is the tighter (higher) lower bound?
- The ForkJoin Java Framework achieves the following expected time asymptotic bound:

$$\mathbf{T}_{\mathbf{P}} \in \mathbf{O}(\mathbf{T}_{\infty} + \mathbf{T}_{1} / \mathbf{P})$$

- this bound is optimal

Amdahl's Law

- Most programs have
 - 1. parts that parallelize well
 - 2. parts that don't parallelize at all

• The latter become bottlenecks

Amdahl's Law

- Let $T_1 = 1$ unit of time
- Let S = proportion that can't be parallelized

$$1 = T_1 = S + (1 - S)$$

• Suppose we get perfect linear speedup on the parallel portion:

T_P =

• So the overall speed-up on P processors is (Amdahl's Law): $T_1 / T_P =$

$$T_1 / T_{\infty} =$$

• If 1/3 of your program is parallelizable, max speedup is:

Pretty Bad News

- Suppose 25% of your program is sequential.
 - Then a billion processors won't give you more than a 4x speedup!
- What portion of your program must be parallelizable to get 10x speedup on a 1000 core GPU?
 - 10 <= 1 / (S + (1-S)/1000)
- Motivates minimizing sequential portions of your programs

Take Aways

- Parallel algorithms can be a big win
- Many fit standard patterns that are easy to implement
- Can't just rely on more processors to make things faster (Amdahl's Law)