CSE 332:
Intro to Parallelism:
Multithreading and Fork-Join

Richard Anderson, Steve Seitz
Winter 2014

2/18/2014

Announcements (2/19/2014)

* HW #5 due today
* HW #6 out today
* Read Grossman 2.1-3.4

Sequential

* Sum up N numbers in an array
— Complexity?

Parallel Sum

* Sum up N numbers in an array
— with two processors

Parallel Sum

* Sum up N numbers in an array
— with N processors?

Parallel Sum

* Sum up N numbers in an array

CCLTITTITIITITIITIITTITTITTIITTIITT]
PGSR
~.,

~ ~, ~
~ ~,
_

« Complexity?
* How many processors?
+ Faster with infinite processors?

2/18/2014

Changing a Major Assumption
« So far, we have assumed:

One thing happens at a time

« Called sequential programming
« Dominated until roughly 2005
— what changed?

A Simplified History

From roughly 1980-2005, desktop computers got exponentially
faster at running sequential programs
— About twice as fast every couple years

Writing parallel (multi-threaded) code is harder than sequential
— Especially in common languages like Java and C

But nobody knows how to continue this
— Increasing clock rate generates too much heat
— Relative cost of memory access is too high

— But we can keep making “wires exponentially smaller”
(Moore’s “Law”), so put multiple processors on the same
chip (“multicore”)

Who Implements Parallelism

* User

* Application

« Operating System

« Programming Language, Compiler

» Algorithm

Processor Hardware

Parallelism vs. Concurrency

Parallelism: Concurrency:
Use extra resources to Manage access to shared
solve a problem faster resources
work if\uﬁ
resources resource

10

An analogy

A program is like a recipe for a cook
— Sequential: one cook who does one thing at a time

Parallelism: (Let's get the job done faster!)
— Have lots of potatoes to slice?
— Hire helpers, hand out potatoes and knives
— But too many chefs and you spend all your time coordinating

Concurrency: (We need to manage a shared resource)
— Lots of cooks making different things, but only 4 stove burners
— Want to allow access to all 4 burners, but not cause spills or
incorrect burner settings

Shared Memory with Threads

Old story: A running program has
— One program counter (current statement executing)
— One call stack (with each stack frame holding local variables)
— Objects in the heap created by memory allocation (i.e., new)
« (nothing to do with data structure called a heap)
— Static fields

New story:
— A set of threads, each with its own program counter & call stack
» No access to another thread’s local variables
— Threads can share static fields / objects
» To communicate, write values to some shared location that
another thread reads from

12

Old Story: one call stack, one pc

Heap for all objects

« Call stack with local variables and static fields

* pc determines current statement
« local variables are numbers/null
or heap references

13
13

2/18/2014

New Story: Shared Memory with Threads

Heap for all objects
and static fields, shared

Threads, each with own unshared by all threads

call stack and “program counter”

14

Other models

We will focus on shared memory, but you should know several
other models exist and have their own advantages (see notes)

* Message-passing: Each thread has its own collection of objects.
Communication is via explicitly sending/receiving messages

— Cooks working in separate kitchens, mail around ingredients

« Dataflow: Programmers write programs in terms of a DAG.
A node executes after all of its predecessors in the graph
— Cooks wait to be handed results of previous steps

« Data parallelism: Have primitives for things like “apply function
to every element of an array in parallel”

15

Our Needs

To write a shared-memory parallel program, need new primitives
from a programming language or library

« Ways to create and run multiple things at once
— Let’s call these things threads

* Ways for threads to share memory
— Often just have threads with references to the same objects

« Ways for threads to coordinate (a.k.a. synchronize)

— For now, a way for one thread to wait for another to finish
— Other primitives when we study concurrency

16

Threads vs. Processors

What happens if you start 5 threads on a machine with
only 4 processors (cores)?

17

Threads vs. Processors

For sum operation:
— with 3 processors available,
using 4 threads would take 50% more time than 3 threads

18

2/18/2014

Fork-Join Parallelism

1. Define thread

— Java: define subclass of java.lang.Thread, override run

2. Fork: instantiate a thread and start executing
— Java: create thread object, call start ()

3. Join: wait for thread to terminate
— Java: call join () method, which returns when thread finishes

Above uses basic thread library build into Java
Later we'll introduce a better ForkJoin Java library designed for
parallel programming

19

Sum with Threads

For starters: have 4 threads simultaneously sum ¥ of the array

T T T T T T T T T T I
L N I N]
ans0 a%sl adsZ ahs3
T~
ans

Create 4 thread objects, each given ¥ of the array
Call start () on each thread object to run it in parallel
Wait for threads to finish using join ()

Add together their 4 answers for the final result

20

Part 1: define thread class

class SumThread extends java.lang.Thread ({

int lo; // fields, passed to constructor
int hi; // so threads know what to do.
int[] arr;

int ans = 0; // result

SumThread (int[] a, int 1, int h) {
lo=1; hi=h; arr=a;

}

public void run() //override must have this type
for (int i=lo; i < hi; i++)
ans += arr[i];

Because we must override a no-arguments/no-result run,

we use fields to communicate across threads o

Part 2: sum routine

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+l)*1len/4);

ts[i].start();

for (int i=0; i < 4; i++) { // combine results
ts([i].join(); // wait for helper to finish!
ans += ts[i].ans;

}

return ans;

22

Parameterizing by number of
threads

int sum(int[] arr, int numTs) {
int ans = 0;
SumThread[] ts = new SumThread[numTs];
for(int i1=0; i < numTs; i++) {
ts[i] = new SumThread (arr, (i*arr.length) /numTs,

((i+1) *arr.length) /numTs) ;

ts[i].start();

}

for(int i=0; i < numTs; i++) {
ts[i].join();
ans += ts[i].ans;

}

return ans;

23

Recall: Parallel Sum

Sum up N numbers in an array

PR I

S~ \\\+/// \\\ —
\\\\\+/////’ \\\\\+//,//’
\\\\\\\‘\\\\f,/’/”/’/”/

Let's implement this with threads...

24

2/18/2014

Code looks something like this (using Java Threads)

class SumThread extends java.lang.Thread ({
int 1c int hi; int[] arr; // fields to know what to do
int = 0; // result
SumThread (int[] &, int 1, int h) { .. }
public void run(){ // override
if (hi - lo < SEQUENTIAL CUTOFF)
for(int i=lo; i < hi; i++)
ans += arr[i];
else {
SumThread
SumThread ri
left.start();
right.start();
left.join(); // don’t move this up a line - why?
right.join();
ans = left.ans + right.ans;

new SumThread(arr,lo, (hi+lo)/2);
new SumThread (arr, (hi+lo)/2,hi);

}
}
}
int sum(int[] arr){ // just make one thread!
SumThread t = new SumThread(arr,0,arr.length);

t.run();
return t.ans;

Thread: sum range [0,10) Recursive problem decomposition

Thread: sum range [0,5) Example: summing
Thread: sum range [0,2) an array with 10 elements.
Thread: sum range [0,1) (return arr[0]) (too small to actually want to
Thread: sum range [1,2) (return arr[1]) use parallelism)
add results from two helper threads
Thread: sum range [2,5)

The algorithm produces the
Thread: sum range [2,3) (return arr[2]) following tree of recursion,
Thread: sum range [3,5) where the range [i,j)
Thread: sum range [3,4) (return arr[3]) includes i and excludes j
Thread: sum range [4,5) (return arr{4])
add results from two helper threads
add results from two helper threads
add results from two helper threads
Thread: sum range [5,10)
Thread: sum range [5,7)
Thread: sum range [5,6) (return arr(s])
Thread: sum range [6,7) (return arr[6])
add results from two helper threads
Thread: sum range [7,10)
Thread: sum range [7,8) (return arr(7])
Thread: sum range [8,10)
Thread: sum range [8,9) (return arr{8])
Thread: sum range [9,10) (return arr[9])
add results from two helper threads
add results from two helper threads
add results from two helper threads

26

Divide-and-conquer
Same approach useful for many problems beyond sum
— If you have enough processors, total time O(log n)
— Next lecture: study reality of P << n processors

« Will write all our parallel algorithms in this style
— But using a special fork-join library engineered for this style
« Takes care of scheduling the computation well
— Often relies on operations being associative (like +)

T T T O O T T
VU R ST
~, ~ ~ T~
\+ _— \+ _—

T 27

Thread Overhead

Creating and managing threads incurs cost

Two optimizations:
1. Use asequential cutoff, typically around 500-1000
« Eliminates lots of tiny threads

2. Do not create two recursive threads; create one thread and

do the other piece of work “yourself”
« Cuts the number of threads created by another 2x

28

Half the threads!

order of last 4 lines
Is critical — why?

// wasteful: don’t // better: do!!
SumThread left - SumThread left
SumThread right SumThread right

left.start () ; Note: run isa
normal function call!

execution won t
continue until we
are done with run

left.start () ;
right.start(); right.run();

left.join(); left.join();
right.join(); // no right.join needed
ans=left.ans+right.ans; ans=left.ans+right.ans;

29

Better Java Thread Library

« Even with all this care, Java’s threads are too “heavyweight”
— Constant factors, especially space overhead
— Creating 20,000 Java threads just a bad idea ®

« The ForkJoin Framework is designed to meet the needs of divide-
and-conquer fork-join parallelism

— In the Java 7 standard libraries
* (Also available for Java 6 as a downloaded . jar file)

— Section will focus on pragmatics/logistics

— Similar libraries available for other languages
* C/C++: Cilk (inventors), Intel's Thread Building Blocks
* C#: Task Parallel Library

30

2/18/2014

Different terms, same basic idea

To use the ForkJoin Framework:
« Alittle standard set-up code (e.g., create a ForkJoinPool)

Do subclass RecursiveTask<V>
Do override compute
Do return a v from compute

Don'’t subclass Thread
Don't override run

Do not use an ans field
Don'tcall start Do call fork

Don'’t just call join Do call join (which returns answer)
Don'’t call run to hand-optimize Do call compute to hand-optimize
Don’t have a topmost call to run Do create a pool and call invoke

See the web page for (linked in to project 3 description):
“A Beginner’s Introduction to the ForkJoin Framework”

31

Fork Join Framework Version:

class SumArray extends RecurslveTask<Integer> {
int lo; int hi; int[] rr; // fields to know what to do
SumArray (int[] a, int int h) { ..}
protected Integer c e(){// return answer
if (hi - lo < SEQUENTIAL CUTOFF) {
int ans = 0; // local var, not a field
for(int i=lo; i < hi; i++)
ans += arr[i];
return ans;

} else {
SumArray = new SumArray (arr,lo, (hi+lo)/2);
SumArray ri = new SumArray (arr, (hi+lo)/2,hi);
left fork()
F

right.compute () ;/
left.join(); // ge
return leftAns + rightAns;
}

}
}
static final ForkJoinPool fjPool = new ForkJoinPool () ;
int sum(int[] arr){

return fjPool.invoke (new SumArray(arr,0,arr.length));

// invoke returns the value compute returns

// fork a thread and Va115 LQWpUtP

