CSE 332: Graphs

Richard Anderson, Steve Seitz
 Winter 2014

Announcements (2/12/14)

- Exams
- Return at end of class
- Mean 62.5, Median 63, sd 7.2
- HW 5 available
- Project 2B due Thursday night
- Reading for this week: Chapter 9.1, 9.2, 9.3

Graphs

-A formalism for representing relationships between objects

Graph $\mathrm{g}=(\mathrm{V}, \mathrm{E})$
-Set of vertices:
$\mathrm{v}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$

-Set of edges:

$$
E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}
$$

where each e_{i} connects one vertex to another ($\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}$)

$$
\begin{aligned}
\mathrm{V}= & \{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\} \\
\mathrm{E}= & \{(\mathrm{C}, \mathrm{~B}), \\
& (\mathrm{A}, \mathrm{~B}), \\
& (\mathrm{B}, \mathrm{~A}) \\
& (\mathrm{C}, \mathrm{D})\}
\end{aligned}
$$

For directed edges, $\left(\mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{k}}\right)$ and $\left(\mathbf{v}_{\mathbf{k}}, \mathbf{v}_{\mathbf{j}}\right)$ are distinct. (More on this later...)

Graphs

Notation

$|\mathrm{V}|=$ number of vertices
$|\mathrm{E}|=$ number of edges

$\cdot \mathbf{v}$ is adjacent to \mathbf{u} if $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$
-neighbor of = adjacent to
-Order matters for directed edges
-It is possible to have an edge (\mathbf{v}, v),
called a loop.

$$
\begin{aligned}
V= & \{A, B, C, D\} \\
E= & \{(C, B), \\
& (A, B), \\
& (B, A) \\
& (C, D)\}
\end{aligned}
$$

-We will assume graphs without loops.

Examples of Graphs

For each, what are the vertices and edges?

- The web
- Facebook
- Highway map
- Airline routes
- Call graph of a program

Directed Graphs

In directed graphs (a.k.a., digraphs), edges have a direction:

Thus, (u, v) $\in E$ does not imply ($v, u) \in E$.
I.e., \mathbf{v} adjacent to \mathbf{u} does not imply \mathbf{u} adjacent to \mathbf{v}.

In-degree of a vertex: number of inbound edges.
Out-degree of a vertex : number of outbound edges.

Undirected Graphs

In undirected graphs, edges have no specific direction (edges are always two-way):

Thus, (\mathbf{u}, v) $\in \mathrm{E}$ does imply $(\mathrm{v}, \mathrm{u}) \in \mathrm{E}$. Only one of these edges needs to be in the set; the other is implicit.

Degree of a vertex: number of edges containing that vertex. (Same as number of adjacent vertices.)

Weighted Graphs

Each edge has an associated weight or cost.

Kingston $\bigcirc 30$ Edmonds

Paths and Cycles

- A path is a list of vertices $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{\mathrm{q}}\right\}$ such that $\left(\mathbf{w}_{\mathbf{i}}, \mathbf{w}_{\mathbf{i}+1}\right) \in \mathrm{E}$ for all $\mathbf{1} \leq \mathbf{i}<\mathbf{q}$
- A cycle is a path that begins and ends at the same node

$P=\{$ Seattle, Salt Lake City, Chicago,
Dallas, San Francisco, Seattle\}

Path Length and Cost

- Path length: the number of edges in the path
- Path cost: the sum of the costs of each edge

For path P :
length $(P)=5$
$\operatorname{cost}(P)=11.5$

How would you ensure that length $(p)=\operatorname{cost}(p)$ for all p ?

Simple Paths and Cycles

A simple path repeats no vertices (except that the first can also be the last):

P = \{Seattle, Salt Lake City, San Francisco, Dallas $\}$
P = \{Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
A cycle is a path that starts and ends at the same node:
$P=\{$ Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
P = \{Seattle, Salt Lake City, Seattle, San Francisco, Seattle\}

A simple cycle is a cycle that is also a simple path (in undirected graphs, no edge can be repeated).

Paths/Cycles in Directed Graphs

Consider this directed graph:

Is there a path from A to D ?
Does the graph contain any cycles?

Undirected Graph Connectivity

Undirected graphs are connected if there is a path between any two vertices:

Connected graph

Disconnected graph

A complete undirected graph has an edge between every pair of vertices:
(Complete $=$ fully connected $)$

Directed Graph Connectivity

Directed graphs are strongly connected if there is a path from any one vertex to any other.

Directed graphs are weakly connected if there is a path between any two vertices, ignoring direction.

A complete directed graph has a directed edge between every pair of vertices. (Again, complete = fully connected.)

Trees as Graphs

A tree is a graph that is:

- undirected
- acyclic
- connected

Rooted Trees

We are more accustomed to:
-Rooted trees (a tree node that is "special")
-Directed edges from parents to children (parent closer to root).

A rooted tree (root indicated in red) drawn two ways

Rooted tree with directed edges from parents to children.

Characteristics of this one?

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program callgraph is a DAG, then all procedure calls can be inlined

$|E|$ and $|V|$

How many edges $|\mathrm{E}|$ in a graph with $|\mathrm{V}|$ vertices?
What if the graph is directed?
What if it is undirected and connected?
Can the following bounds be simplified?

- Arbitrary graph: $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$
- Arbitrary graph: $\mathrm{O}\left(|\mathrm{E}|+|\mathrm{V}|^{2}\right)$
- Undirected, connected: $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|+|\mathrm{V}| \log |\mathrm{V}|)$

Some (semi-standard) terminology:

- A graph is sparse if it has $\mathrm{O}(|\mathrm{V}|)$ edges (upper bound).
- A graph is dense if it has $\Theta\left(|\mathrm{V}|^{2}\right)$ edges.

What's the data structure?

- Common query: which edges are adjacent to a vertex

$O(|v|)$

$O(|d|)$

Representation 2: Adjacency List

A list (array) of length $|\mathrm{V}|$ in which each entry stores a list (linked list) of all adjacent vertices

Runtime:
Iterate over vertices? $\bigcirc(|\mathrm{V}|)$ Iterate over edges? $O(|N|+|E|)$ Space requirements? $|V|+|E|$ Iterate edges adj. to vertex? O (d) Best for what kinds of graphs? Existence of edge? $O(d)$ lough of linked list

Representation 1: Adjacency Matrix

A $|\mathrm{V}| \mathbf{x}|\mathrm{V}|$ matrix M in which an element $\mathrm{M}[\mathbf{u}, \mathrm{v}]$ is true if and only if there is an edge from u to v

Runtime:
Space requirements? $|\mathrm{V}|^{2}$ Iterate edges adj. to vertex? O(IV内 Best for what kinds of graphs? dense Existence of edge? $\bigcirc(1)$

Representing Undirected Graphs

What do these reps look like for an undirected graph?

Some Applications: Moving Around Washington

What's the shortest route to from Seattle to Pullman?
Edge labels: distance

Some Applications: Moving Around Washington

What's the quickest way to get from Seattle to Pullman?
Edge labels: time

Some Applications: Reliability of Communication

If Wenatchee's phone exchange goes down, can Seattle still talk to Pullman?

Some Applications: Bus Routes in Downtown Seattle

If we're at $3^{\text {rd }}$ and Pine, how can we get to $1^{\text {st }}$ and University using Metro?
How about $4^{\text {th }}$ and Seneca?

Application: Topological Sort

Given a graph, $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, output all the vertices in v sorted so that no vertex is output before any other vertex with an edge to it.

What kind of input graph is allowed?
$D A G$

Topological Sort: Take One

1. Label each vertex with its in-degree (\# inbound edges)
2. While there are vertices remaining:
a. Choose a vertex vof in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

Runtime:


```
void Graph::topsort(){
    Vertex v, w;
```



```
    v.topologicalNum = counter;
    for each w adjacent to v O(lE|) entre propaus overlours of
    }
}
                        total =O(NN2)
```


Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
a. $\quad v=$ Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v
c. If new in-degree of any such vertex u is zero
Q.enqueue(u)

Note: could use a stack, list, set, box, ... instead of a queue
void Graph::topsort() \{
Queue q(NUM_VERTICES);
int counter $=0$;
Vertex v, w;
labelEachVertexWithItsIn-degree();
q.makeEmpty();
for each vertex v

intialize the queue

 if (v.indegree == 0)
 if (v.indegree == 0)
 q.enqueue(v);
 while (!q.isEmpty()) \{
 v = q.dequeue();
 get a vertex with indegree 0
v.topologicalNum = ++counter;
for each w adjacent to v
if (--w.indegree $==0$) q.enqueue (w) ;
\}

insert new
eligible
vertices

