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How fast can we sort? 

Heapsort, Mergesort, Heapsort, AVL sort all have 

O(N log N) worst case running time. 

 

These algorithms, along with Quicksort, also have 

O(N log N) average case running time. 

 

Can we do any better? 
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Permutations 

• Suppose you are given N elements 

– Assume no duplicates 

• How many possible orderings can you get? 

– Example: a, b, c  (N = 3) 
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Permutations 

• How many possible orderings can you get? 

– Example: a, b, c  (N = 3) 

– (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)    

– 6 orderings = 3•2•1 = 3!   (i.e., “3 factorial”) 

 

• For N elements 

– N choices for the first position, (N-1) choices for the 

second position, …, (2) choices, 1 choice 

– N(N-1)(N-2)(2)(1)= N! possible orderings 
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Sorting Model 

Recall our basic sorting assumption:  

 

We can only compare  

two elements at a time. 

 

These comparisons prune the space of possible 
orderings. 

 

We can represent these concepts in a… 
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Decision Tree 

a < b < c,  b < c < a, 

c < a < b,  a < c < b, 

b < a < c,  c < b < a  

a < b < c 

c < a < b 

a < c < b 

b < c < a 

 b < a < c  

c < b < a 

a < b < c 

a < c < b 

c < a < b 

a < b < c a < c < b 

b < c < a 

 b < a < c  

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

The leaves contain all the possible orderings of a, b, c. 
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Decision Trees 

• A Decision Tree is a Binary Tree such that: 
– Each node = a set of orderings 

• i.e., the remaining solution space 

– Each edge = 1 comparison 

– Each leaf = 1 unique ordering 

– How many leaves for N distinct elements? 

 

 

• Only 1 leaf has the ordering that is the 
desired correctly sorted arrangement 
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Decision Tree Example 

a < b < c,  b < c < a, 

c < a < b,  a < c < b, 

b < a < c,  c < b < a  

a < b < c 

c < a < b 

a < c < b 

b < c < a 

 b < a < c  

c < b < a 

a < b < c 

a < c < b 

c < a < b 

a < b < c a < c < b 

b < c < a 

 b < a < c  

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

possible orders 

actual order 
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Decision Trees and Sorting 

• Every sorting algorithm corresponds to a 
decision tree 
– Finds correct leaf by choosing edges to follow 

• i.e., by making comparisons 

• We will focus on worst case run time 

• Observations: 
– Worst case run time  max number of comparisons 

– Max number of comparisons  
 = length of the longest path in the decision tree  
 = tree height 
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How many leaves on a tree? 

Suppose you have a binary tree of height h. How 

many leaves in a perfect tree? 

 

 

 

 

 

 

We can prune a perfect tree to make any binary 

tree of same height.  Can # of leaves increase? 
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• A binary tree of height h has at most 2h leaves 

– Can prove by induction 

• A decision tree has N! leaves.  What is its 

minimum height? 

Lower bound on Height 
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An Alternative Explanation 

At each decision point, one branch has ≤ ½ of the options 

remaining, the other has ≥ ½ remaining. 

Worst case: we always end up with ≥ ½ remaining.   

Best algorithm, in the worst case: we always end up with 

exactly ½ remaining. 

Thus, in the worst case, the best we can hope for is halving 

the space d times (with d comparisons), until we have an 

answer, i.e., until the space is reduced to size = 1.  

The space starts at N! in size, and halving d times means 

multiplying by 1/2d, giving us a lower bound on the worst 

case:  
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Lower Bound on log(N!) 
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(N log N) 

Worst case run time of any comparison-based 

sorting algorithm is (N log N) . 

 

Can also show that average case run time is also 

(N log N) . 

 

Can we do better if we don’t use comparisons?  

(Huh?) 
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Can we sort in O(n)? 

• Suppose keys are integers between 0 and 1000 
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BucketSort (aka BinSort) 
 If all values to be sorted are integers between 1 

and B, create an array count of size B, 

increment counts while traversing the input, and 

finally output the result. 
 

Example   B=5.   Input = (5,1,3,4,3,2,1,1,5,4,5) 

count array 

1 

2 

3 

4 

5 

Running time to sort n items? 
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What about our (n log n) bound? 
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Dependence on B 

What if B is very large (e.g., 264)? 
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Fixing impracticality: RadixSort 

• RadixSort: generalization of BucketSort for large 
integer keys 

 

• Origins go back to the 1890 census. 

 

• Radix = “The base of a number system”  
– We’ll use 10 for convenience, but could be anything 

 

• Idea:  
– BucketSort on one digit at a time 

– After kth sort, the last k digits are sorted 

– Set number of buckets: B = radix. 
20 

0 1 2 3 4 5 6 7 8 9 

Radix Sort Example 

0 1 2 3 4 5 6 7 8 9 

Input: 478, 537, 9, 721, 3, 38, 123, 67 

BucketSort 

on 1’s 

0 1 2 3 4 5 6 7 8 9 

BucketSort 

on 10’s 

BucketSort 

on 100’s 

Output: 

21 

67 
123 

38 
3 

721 
9 

537 
478 

Bucket sort  

by 1’s digit 

0 1 

721 

2 3 

3 

123 

4 5 6 7 

537 

67 

8 

478 

38 

9 

9 

Input data 

This example uses B=10 and base 10 

digits for simplicity of demonstration.  

Larger bucket counts should be used 

in an actual implementation. 

Radix Sort Example (1st pass) 

721 

3 

123 

537 

67 

478 

38 

9 

After 1st pass 
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Bucket sort  

by 10’s 

digit 

0 

03 

09 

1 2 

721 

123 

 

3 

537 

38 

4 5 6 

67 

7 

478 

8 
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Radix Sort Example (2nd pass) 

721 

3 

123 

537 

67 

478 

38 

9 

After 1st pass After 2nd pass 

3 

9 

721 

123 

537 

38 

67 

478 
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Bucket sort  

by 100’s 

digit 

0 

003 

009 

038 

067 

1 

123 

2 

 

 

 

3 

 

 

4 

478 

5 

537 

6 7 

721 

8 

 

 

9 

Radix Sort Example (3rd pass) 

After 2nd pass 

3 

9 

721 

123 

537 

38 

67 

478 

After 3rd pass 

3 

9 

38 

67 

123 

478 

537 

721 

Invariant: after k passes the low order k digits are sorted. 
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Radixsort: Complexity 

In our examples, we had: 

– Input size, N 

– Number of buckets, B = 10 

– Maximum value, M < 103 

– Number of passes, P = 

 

How much work per pass?   

 

 

Total time? 
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Choosing the Radix 
Run time is roughly proportional to: 

P(B+N) = logBM(B+N) 

Can show that this is minimized when: 

B logeB ≈ N 

In theory, then, the best base (radix) depends only on N. 

For fast computation, prefer B = 2b.  Then best b is: 

b + log2b ≈ log2N 

Example: 

– N = 1 million (i.e., ~220 ) 64 bit numbers,  M = 264 

– log2N ≈ 20 → b = 16 

– B = 216 = 65,536 and P = log(216) 264 = 4. 

In practice, memory word sizes, space, other architectural 
considerations, are important in choosing the radix. 

Big Data: External Sorting 

Goal:  minimize disk/tape access time: 

• Quicksort and Heapsort both jump all over the array, leading to 

expensive random disk accesses 

• Mergesort scans linearly through arrays, leading to (relatively) 

efficient sequential disk access 

 

Basic Idea: 

• Load chunk of data into Memory, sort, store this “run” on disk/tape 

• Use the Merge routine from Mergesort to merge runs 

• Repeat until you have only one run (one sorted chunk) 

• Mergesort can leverage multiple disks 

• Weiss gives some examples 
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Sorting Summary 
  O(N2) average, worst case: 

– Selection Sort, Bubblesort, Insertion Sort 

O(N log N) average case: 

– Heapsort: In-place, not stable. 

– BST Sort: O(N) extra space (including tree pointers, 
possibly poor memory locality), stable. 

– Mergesort: O(N) extra space, stable. 

– Quicksort: claimed fastest in practice, but O(N2) worst 
case. Recursion/stack requirement. Not stable. 

  (N log N) worst and average case: 

– Any comparison-based sorting algorithm 

  O(N) 

– Radix Sort: fast and stable. Not comparison based. Not in-
place.  Poor memory locality can undercut performance. 


