How fast can we sort?

Heapsort, Mergesort, Heapsort, AVL sort all have $O(N \log N)$ worst case running time.

These algorithms, along with Quicksort, also have $O(N \log N)$ average case running time.

Can we do any better?

Permutations

- Suppose you are given N elements
 - Assume no duplicates
- How many possible orderings can you get?
 - Example: a, b, c ($N = 3$)

 - 6 orderings = $3!$ (i.e., “3 factorial”)

- For N elements
 - N choices for the first position, $(N-1)$ choices for the second position, …, (2) choices, 1 choice
 - $N(N-1)(N-2)\cdots(2)(1) = N!$ possible orderings

Sorting Model

Recall our basic sorting assumption:

We can only compare two elements at a time.

These comparisons prune the space of possible orderings.

We can represent these concepts in a…

Decision Tree

The leaves contain all the possible orderings of a, b, c.
Decision Trees

- A Decision Tree is a Binary Tree such that:
 - Each node = a set of orderings
 - i.e., the remaining solution space
 - Each edge = 1 comparison
 - Each leaf = 1 unique ordering
 - How many leaves for \(N \) distinct elements?

- Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Decision Tree Example

<table>
<thead>
<tr>
<th>Possible Orders</th>
<th>Actual Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>a < b < c</td>
<td>a < b < c</td>
</tr>
<tr>
<td>a < c < b</td>
<td>a < c < b</td>
</tr>
<tr>
<td>b < a < c</td>
<td>b < a < c</td>
</tr>
<tr>
<td>b < c < a</td>
<td>b < c < a</td>
</tr>
<tr>
<td>c < a < b</td>
<td>c < a < b</td>
</tr>
<tr>
<td>c < b < a</td>
<td>c < b < a</td>
</tr>
</tbody>
</table>

Decision Trees and Sorting

- Every sorting algorithm corresponds to a decision tree
 - Finds correct leaf by choosing edges to follow
 - i.e., by making comparisons
- We will focus on worst case run time
- Observations:
 - Worst case run time \(\geq \) max number of comparisons
 - Max number of comparisons = length of the longest path in the decision tree = tree height

How many leaves on a tree?

Suppose you have a binary tree of height \(h \). How many leaves in a perfect tree?

We can prune a perfect tree to make any binary tree of same height. Can # of leaves increase?

Lower bound on Height

- A binary tree of height \(h \) has at most \(2^h \) leaves
 - Can prove by induction
- A decision tree has \(N! \) leaves. What is its minimum height?

An Alternative Explanation

At each decision point, one branch has \(\leq \frac{1}{2} \) of the options remaining, the other has \(\geq \frac{1}{2} \) remaining.

Worst case: we always end up with \(\geq \frac{1}{2} \) remaining.

Best algorithm, in the worst case: we always end up with exactly \(\frac{1}{2} \) remaining.

Thus, in the worst case, the best we can hope for is halving the space \(d \) times (with \(d \) comparisons), until we have an answer, i.e., until the space is reduced to size = 1.

The space starts at \(N! \) in size, and halving \(d \) times means multiplying by \(1/2^d \), giving us a lower bound on the worst case:

\[
\frac{N!}{2^d} = 1 \implies N! = 2^d \implies d = \log_2(N!)
\]
Lower Bound on $\log(N!)$

$\Omega(N \log N)$

Worst case run time of any comparison-based sorting algorithm is $\Omega(N \log N)$.

Can also show that **average case** run time is also $\Omega(N \log N)$.

Can we do better if we don’t use comparisons? (Huh?)

Can we sort in $O(n)$?

- Suppose keys are integers between 0 and 1000

BucketSort (aka BinSort)

If all values to be sorted are integers between 1 and B, create an array count of size B, increment counts while traversing the input, and finally output the result.

Example $B=5$. Input = (5,1,3,4,3,2,1,1,5,4,5)

<table>
<thead>
<tr>
<th>count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Running time to sort n items?

What about our $\Omega(n \log n)$ bound?

Dependence on B

What if B is very large (e.g., 2^{64})?
Fixing impracticality: RadixSort

- RadixSort: generalization of BucketSort for large integer keys
- Origins go back to the 1890 census.
- Radix = “The base of a number system”
 - We’ll use 10 for convenience, but could be anything
- **Idea:**
 - BucketSort on one digit at a time
 - After k\(^{th}\) sort, the last k digits are sorted
 - Set number of buckets: \(B = \text{radix} \)

Radix Sort Example

Input data

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
<td>537</td>
<td>9</td>
<td>721</td>
<td>3</td>
<td>38</td>
<td>123</td>
<td>67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BucketSort on 1's

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>721</td>
<td>123</td>
<td>38</td>
<td>67</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

BucketSort on 10's

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>721</td>
<td>123</td>
<td>537</td>
<td>67</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

BucketSort on 100's

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>721</td>
<td>123</td>
<td>537</td>
<td>67</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Output:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>478</td>
<td>67</td>
<td>123</td>
<td>38</td>
<td>3</td>
<td>9</td>
<td>721</td>
<td>537</td>
<td>478</td>
</tr>
</tbody>
</table>

Radix Sort Example (1\(^{st}\) pass)

Input data

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
<td>537</td>
<td>9</td>
<td>721</td>
<td>3</td>
<td>38</td>
<td>123</td>
<td>67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bucket sort by 1's digit

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>721</td>
<td>123</td>
<td>122</td>
<td>38</td>
<td>67</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

After 1\(^{st}\) pass

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
<td>123</td>
<td>537</td>
<td>67</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Radix Sort Example (2\(^{nd}\) pass)

Input data

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
<td>537</td>
<td>9</td>
<td>721</td>
<td>3</td>
<td>38</td>
<td>123</td>
<td>67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bucket sort by 10's digit

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>721</td>
<td>123</td>
<td>537</td>
<td>67</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

After 2\(^{nd}\) pass

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
<td>123</td>
<td>537</td>
<td>67</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Radix Sort Example (3\(^{rd}\) pass)

Input data

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
<td>537</td>
<td>9</td>
<td>721</td>
<td>3</td>
<td>38</td>
<td>123</td>
<td>67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bucket sort by 100's digit

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>721</td>
<td>123</td>
<td>537</td>
<td>67</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

After 3\(^{rd}\) pass

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
<td>123</td>
<td>537</td>
<td>67</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

RadixSort: Complexity

In our examples, we had:
- Input size, \(N \)
- Number of buckets, \(B = 10 \)
- Maximum value, \(M < 10^3 \)
- Number of passes, \(P = \)

How much work per pass?

Total time?
Choosing the Radix

Run time is roughly proportional to:

\[P(B+N) = \log_B M(B+N) \]

Can show that this is minimized when:

\[B \log_B N = N \]

In theory, then, the best base (radix) depends only on \(N \).

For fast computation, prefer \(B = 2^6 \). Then best \(b \) is:

\[b + \log_2 b = \log_2 N \]

Example:

\[N = 1 \text{ million (i.e., } \sim 2^{20} \text{) 64 bit numbers, } M = 2^{64} \]
\[\log_2 N = 20 \rightarrow b = 16 \]
\[B = 2^{16} = 65,536 \text{ and } P = \log_{2^{16}} 2^{64} = 4. \]

In practice, memory word sizes, space, other architectural considerations, are important in choosing the radix.

Big Data: External Sorting

Goal: **minimize disk/tape access** time:

- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access

Basic Idea:

- Load chunk of data into Memory, sort, store this “run” on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Mergesort can leverage multiple disks
- Weiss gives some examples

Sorting Summary

- **\(O(N) \)** average, worst case:
 - Selection Sort, Bubblesort, Insertion Sort
- **\(O(N \log N) \)** average case:
 - Heapsort: in-place, not stable.
 - BST Sort: \(O(N) \) extra space (including tree pointers, possibly poor memory locality), stable.
 - Mergesort: \(O(N) \) extra space, stable.
- **\(\Omega(N \log N) \)** worst and average case:
 - Any comparison-based sorting algorithm
- **\(O(N) \)**