
1

CSE 332:

Sorting Bound, and Radix Sort

Richard Anderson, Steve Seitz

Winter 2014

2

How fast can we sort?

Heapsort, Mergesort, Heapsort, AVL sort all have

O(N log N) worst case running time.

These algorithms, along with Quicksort, also have

O(N log N) average case running time.

Can we do any better?

3

Permutations

• Suppose you are given N elements

– Assume no duplicates

• How many possible orderings can you get?

– Example: a, b, c (N = 3)

4

Permutations

• How many possible orderings can you get?

– Example: a, b, c (N = 3)

– (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)

– 6 orderings = 3•2•1 = 3! (i.e., “3 factorial”)

• For N elements

– N choices for the first position, (N-1) choices for the

second position, …, (2) choices, 1 choice

– N(N-1)(N-2)(2)(1)= N! possible orderings

5

Sorting Model

Recall our basic sorting assumption:

We can only compare

two elements at a time.

These comparisons prune the space of possible
orderings.

We can represent these concepts in a…

6

Decision Tree

a < b < c, b < c < a,

c < a < b, a < c < b,

b < a < c, c < b < a

a < b < c

c < a < b

a < c < b

b < c < a

 b < a < c

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < c < a

 b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

The leaves contain all the possible orderings of a, b, c.

2

7

Decision Trees

• A Decision Tree is a Binary Tree such that:
– Each node = a set of orderings

• i.e., the remaining solution space

– Each edge = 1 comparison

– Each leaf = 1 unique ordering

– How many leaves for N distinct elements?

• Only 1 leaf has the ordering that is the
desired correctly sorted arrangement

8

Decision Tree Example

a < b < c, b < c < a,

c < a < b, a < c < b,

b < a < c, c < b < a

a < b < c

c < a < b

a < c < b

b < c < a

 b < a < c

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < c < a

 b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

9

Decision Trees and Sorting

• Every sorting algorithm corresponds to a
decision tree
– Finds correct leaf by choosing edges to follow

• i.e., by making comparisons

• We will focus on worst case run time

• Observations:
– Worst case run time max number of comparisons

– Max number of comparisons
 = length of the longest path in the decision tree
 = tree height

10

How many leaves on a tree?

Suppose you have a binary tree of height h. How

many leaves in a perfect tree?

We can prune a perfect tree to make any binary

tree of same height. Can # of leaves increase?

11

• A binary tree of height h has at most 2h leaves

– Can prove by induction

• A decision tree has N! leaves. What is its

minimum height?

Lower bound on Height

12

An Alternative Explanation

At each decision point, one branch has ≤ ½ of the options

remaining, the other has ≥ ½ remaining.

Worst case: we always end up with ≥ ½ remaining.

Best algorithm, in the worst case: we always end up with

exactly ½ remaining.

Thus, in the worst case, the best we can hope for is halving

the space d times (with d comparisons), until we have an

answer, i.e., until the space is reduced to size = 1.

The space starts at N! in size, and halving d times means

multiplying by 1/2d, giving us a lower bound on the worst

case:

2

!
1 ! 2 log (!)

2

d

d

N
N d N

3

13

Lower Bound on log(N!)

14

(N log N)

Worst case run time of any comparison-based

sorting algorithm is (N log N) .

Can also show that average case run time is also

(N log N) .

Can we do better if we don’t use comparisons?

(Huh?)

15

Can we sort in O(n)?

• Suppose keys are integers between 0 and 1000

16

BucketSort (aka BinSort)
 If all values to be sorted are integers between 1

and B, create an array count of size B,

increment counts while traversing the input, and

finally output the result.

Example B=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

count array

1

2

3

4

5

Running time to sort n items?

17

What about our (n log n) bound?

18

Dependence on B

What if B is very large (e.g., 264)?

4

19

Fixing impracticality: RadixSort

• RadixSort: generalization of BucketSort for large
integer keys

• Origins go back to the 1890 census.

• Radix = “The base of a number system”
– We’ll use 10 for convenience, but could be anything

• Idea:
– BucketSort on one digit at a time

– After kth sort, the last k digits are sorted

– Set number of buckets: B = radix.
20

0 1 2 3 4 5 6 7 8 9

Radix Sort Example

0 1 2 3 4 5 6 7 8 9

Input: 478, 537, 9, 721, 3, 38, 123, 67

BucketSort

on 1’s

0 1 2 3 4 5 6 7 8 9

BucketSort

on 10’s

BucketSort

on 100’s

Output:

21

67
123

38
3

721
9

537
478

Bucket sort

by 1’s digit

0 1

721

2 3

3

123

4 5 6 7

537

67

8

478

38

9

9

Input data

This example uses B=10 and base 10

digits for simplicity of demonstration.

Larger bucket counts should be used

in an actual implementation.

Radix Sort Example (1st pass)

721

3

123

537

67

478

38

9

After 1st pass

22

Bucket sort

by 10’s

digit

0

03

09

1 2

721

123

3

537

38

4 5 6

67

7

478

8

9

Radix Sort Example (2nd pass)

721

3

123

537

67

478

38

9

After 1st pass After 2nd pass

3

9

721

123

537

38

67

478

23

Bucket sort

by 100’s

digit

0

003

009

038

067

1

123

2

3

4

478

5

537

6 7

721

8

9

Radix Sort Example (3rd pass)

After 2nd pass

3

9

721

123

537

38

67

478

After 3rd pass

3

9

38

67

123

478

537

721

Invariant: after k passes the low order k digits are sorted.

24

Radixsort: Complexity

In our examples, we had:

– Input size, N

– Number of buckets, B = 10

– Maximum value, M < 103

– Number of passes, P =

How much work per pass?

Total time?

5

25

Choosing the Radix
Run time is roughly proportional to:

P(B+N) = logBM(B+N)

Can show that this is minimized when:

B logeB ≈ N

In theory, then, the best base (radix) depends only on N.

For fast computation, prefer B = 2b. Then best b is:

b + log2b ≈ log2N

Example:

– N = 1 million (i.e., ~220) 64 bit numbers, M = 264

– log2N ≈ 20 → b = 16

– B = 216 = 65,536 and P = log(216) 264 = 4.

In practice, memory word sizes, space, other architectural
considerations, are important in choosing the radix.

Big Data: External Sorting

Goal: minimize disk/tape access time:

• Quicksort and Heapsort both jump all over the array, leading to

expensive random disk accesses

• Mergesort scans linearly through arrays, leading to (relatively)

efficient sequential disk access

Basic Idea:

• Load chunk of data into Memory, sort, store this “run” on disk/tape

• Use the Merge routine from Mergesort to merge runs

• Repeat until you have only one run (one sorted chunk)

• Mergesort can leverage multiple disks

• Weiss gives some examples

26

27

Sorting Summary
 O(N2) average, worst case:

– Selection Sort, Bubblesort, Insertion Sort

O(N log N) average case:

– Heapsort: In-place, not stable.

– BST Sort: O(N) extra space (including tree pointers,
possibly poor memory locality), stable.

– Mergesort: O(N) extra space, stable.

– Quicksort: claimed fastest in practice, but O(N2) worst
case. Recursion/stack requirement. Not stable.

 (N log N) worst and average case:

– Any comparison-based sorting algorithm

 O(N)

– Radix Sort: fast and stable. Not comparison based. Not in-
place. Poor memory locality can undercut performance.

