CSE 332: Sorting Bound, and Radix Sort

Richard Anderson, Steve Seitz Winter 2014

Announcements (2/7/14)

• Midterm next Monday

- Review session: Saturday 12-4, EEB 105

How fast can we sort?

Heapsort, Mergesort, Heapsort, AVL sort all have O(*N* log *N*) **worst** case running time.

These algorithms, along with Quicksort, also have O(*N* log *N*) **average** case running time.

Can we do any better?

Permutations

- Suppose you are given N elements
 Assume no duplicates
- How many possible orderings can you get?

- Example: a, b, c (N = 3)

3.2.1 = G N' = (N)(N-1)(N-2)...

Permutations

- How many possible orderings can you get?
 - Example: a, b, c (N = 3)
 - (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 - -6 orderings = 3.2.1 = 3! (i.e., "3 factorial")
- For *N* elements
 - N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
 - $N(N-1)(N-2)\cdots(2)(1) = N!$ possible orderings

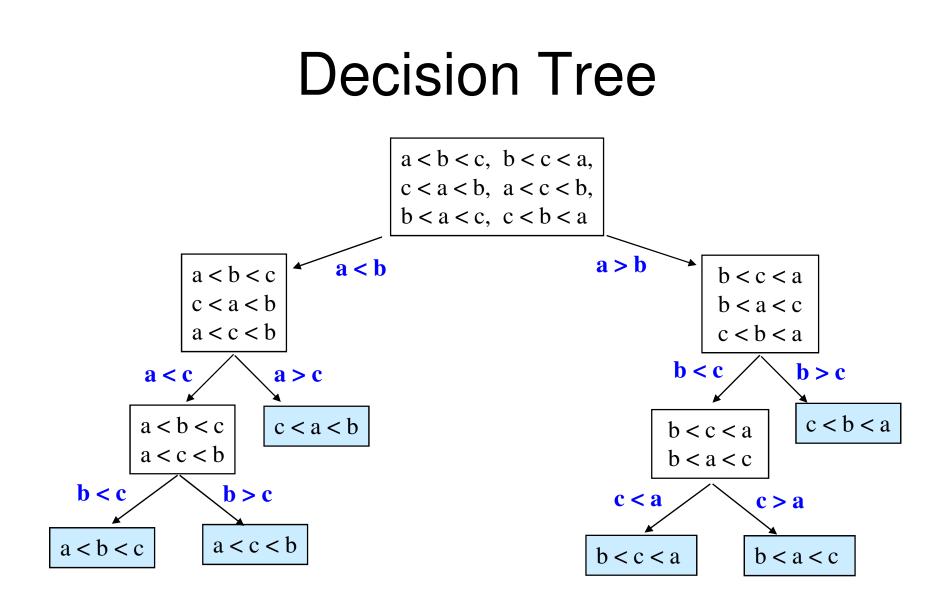
Sorting Model

Recall our basic sorting assumption:

We can only compare two elements at a time.

These comparisons prune the space of possible orderings.

We can represent these concepts in a...



The leaves contain all the possible orderings of a, b, c.

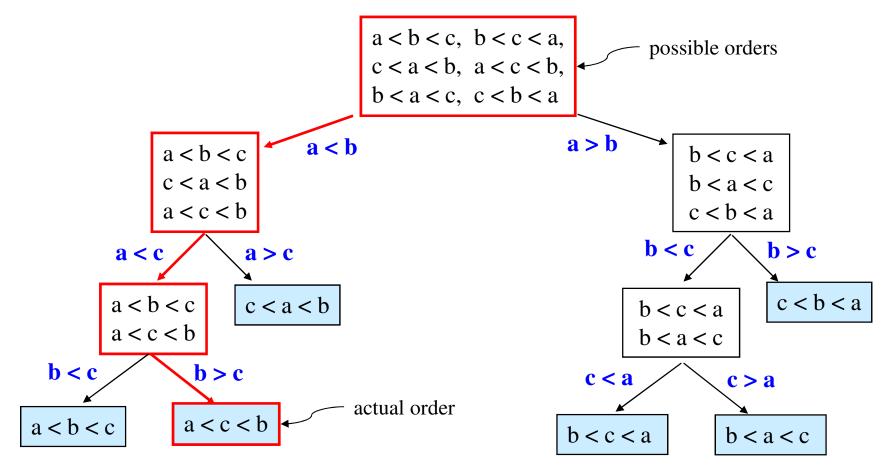
Decision Trees

- A Decision Tree is a Binary Tree such that:
 - Each node = a set of orderings
 - i.e., the remaining solution space
 - Each edge = 1 comparison
 - Each leaf = 1 unique ordering
 - How many leaves for *N* distinct elements?

NI

• Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Decision Tree Example

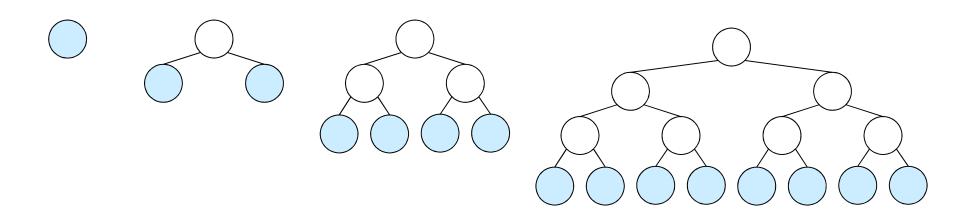


Decision Trees and Sorting

- Every sorting algorithm corresponds to a decision tree
 - Finds correct leaf by choosing edges to follow
 - i.e., by making comparisons
- We will focus on worst case run time
- Observations:
 - Worst case run time \geq max number of comparisons
 - Max number of comparisons
 = length of the longest path in the decision tree
 = tree height

How many leaves on a tree?

Suppose you have a binary tree of height *h*. How many leaves in a perfect tree?



We can prune a perfect tree to make any binary $n_{\mathcal{O}}$ tree of same height. Can # of leaves increase? 11

Lower bound on Height

- A binary tree of height h has at most 2^h leaves
 Can prove by induction
- A decision tree has N! leaves. What is its minimum height?

$$N! = \# \text{feavers} \leq 2'$$

$$h \geq \log_2 N'.$$

An Alternative Explanation

- At each decision point, one branch has $\leq \frac{1}{2}$ of the options remaining, the other has $\geq \frac{1}{2}$ remaining.
- Worst case: we always end up with $\geq \frac{1}{2}$ remaining.
- Best algorithm, in the worst case: we always end up with exactly 1/2 remaining.
- Thus, in the worst case, the best we can hope for is halving the space *d* times (with *d* comparisons), until we have an answer, i.e., until the space is reduced to size = 1.
- The space starts at *N*! in size, and halving *d* times means multiplying by 1/2^{*d*}, giving us a lower bound on the worst case:

$$\frac{N!}{2^d} = 1 \implies N! = 2^d \implies d = \log_2(N!)$$

Lower Bound on log(N!) log N! = log [N(N-i)(N-2)...] = log N + log(N-i) + log(N-2) + ... $\geq \frac{N}{2} log \frac{N}{2}$ $\int (N log N)$

$\Omega(N \log \underline{N})$

Worst case run time of any comparison-based sorting algorithm is $\Omega(N \log N)$.

Can also show that **average case** run time is also $\Omega(N \log N)$.

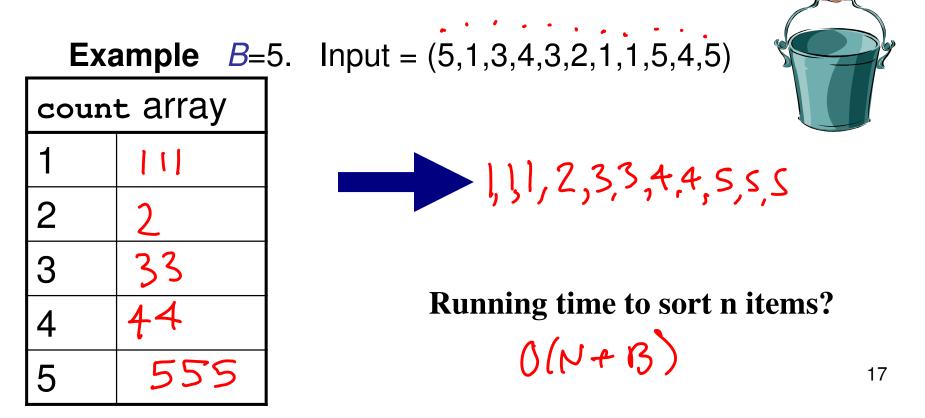
Can we do better if we don't use comparisons? (Huh?)

Can we sort in O(n)?

• Suppose keys are integers between 0 and 1000

BucketSort (aka BinSort)

If all values to be sorted are integers between 1 and *B*, create an array **count** of size *B*, **increment** counts while traversing the input, and finally output the result.



What about our $\Omega(n \log n)$ bound?

not comparison based

Dependence on B

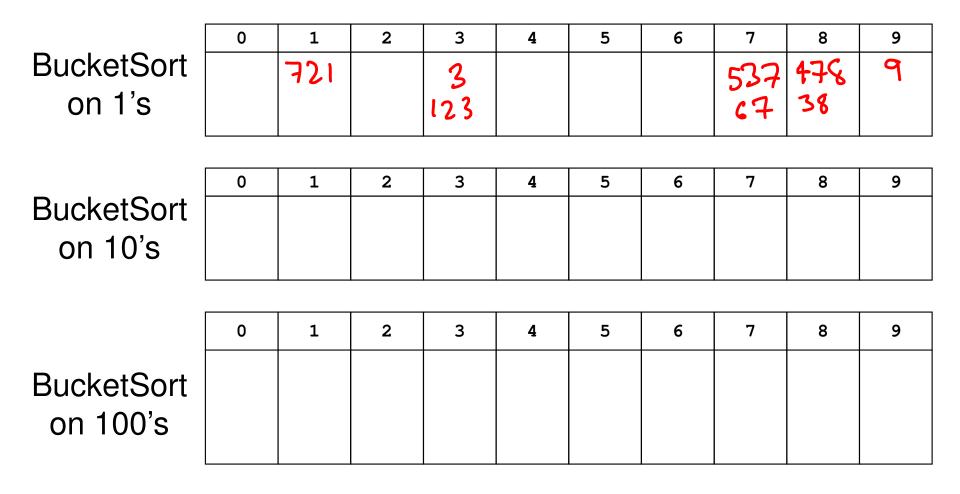
What if *B* is very large (e.g., 2⁶⁴)?

Fixing impracticality: RadixSort

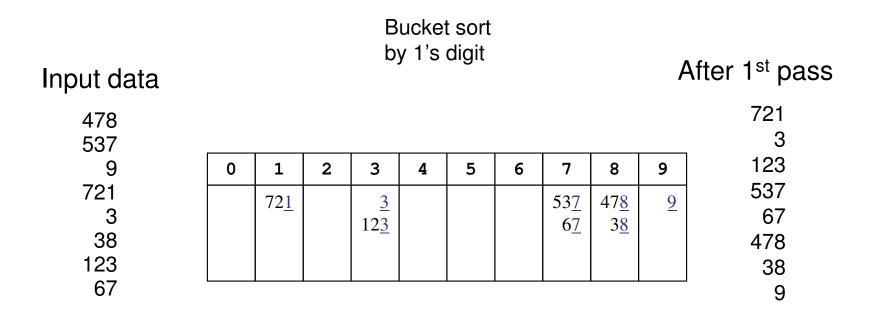
- RadixSort: generalization of BucketSort for large integer keys
- Origins go back to the 1890 census.
- Radix = "The base of a number system"
 - We'll use 10 for convenience, but could be anything
- <u>Idea</u>:
 - BucketSort on one digit at a time
 - After kth sort, the last k digits are sorted
 - Set number of buckets: B = radix.

Radix Sort Example

Input: 478, 537, 9, 721, 3, 38, 123, 67

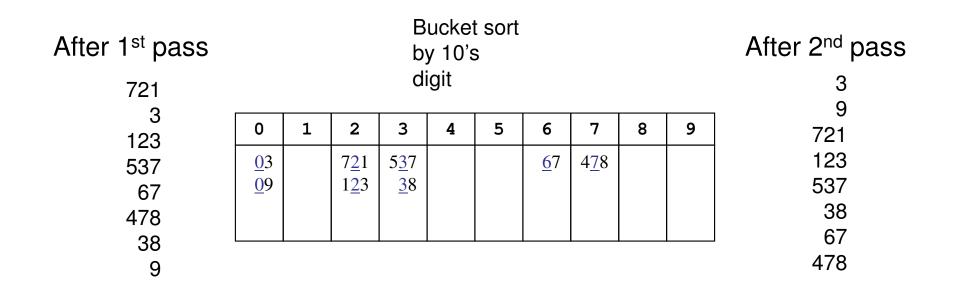


Radix Sort Example (1st pass)



This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Radix Sort Example (2nd pass)



Radix Sort Example (3rd pass)

After 2 nd pass	Bucket sort by 100's										After 3 rd pass
3		digit									3
9	0	1	2	3	4	5	6	7	8	9	9
721		-	2	5		5	0	<i>'</i>	0	J	38
123	<u>0</u> 03	<u>1</u> 23			<u>4</u> 78	<u>5</u> 37		<u>7</u> 21			67
537	<u>0</u> 09										123
38	<u>0</u> 38										478
67	<u>0</u> 67										537
478											721

Invariant: after k passes the low order k digits are sorted.

Radixsort: Complexity

In our examples, we had:

- Input size, N
- Number of buckets, B = 10
- Maximum value, $M < 10^3$
- Number of passes, P =

How much work per pass?

Total time?

Choosing the Radix

Run time is roughly proportional to:

 $P(B+N) = \log_B M(B+N)$

Can show that this is minimized when:

 $B \log_e B \approx N$

In theory, then, the best base (radix) depends only on *N*. For fast computation, prefer $B = 2^{b}$. Then best *b* is:

 $b + \log_2 b \approx \log_2 N$

Example:

- N=1 million (i.e., $\sim 2^{20}$) 64 bit numbers, $M=2^{64}$

$$-\log_2 N \approx 20 \rightarrow b = 16$$

 $-B = 2^{16} = 65,536$ and $P = \log_{(2^{16})} 2^{64} = 4$.

In practice, memory word sizes, space, other architectural considerations, are important in choosing the radix.

Big Data: External Sorting

Goal: **minimize disk/tape access** time:

- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access

Basic Idea:

- Load chunk of data into Memory, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Mergesort can leverage multiple disks
- Weiss gives some examples

Sorting Summary

 $O(N^2)$ average, worst case:

- Selection Sort, Bubblesort, Insertion Sort

O(N log N) average case:

- Heapsort: In-place, not stable.
- AVL Sort: O(N) extra space (including tree pointers, possibly poor memory locality), stable.
- Mergesort: O(N) extra space, stable.
- Quicksort: claimed fastest in practice, but O(N²) worst case. Recursion/stack requirement. Not stable.

 $\Omega(N \log N)$ worst and average case:

- Any comparison-based sorting algorithm O(N)

 Radix Sort: fast and stable. Not comparison based. Not inplace. Poor memory locality can undercut performance.