
CSE 332: Sorting

Richard Anderson, Steve Seitz

Winter 2014

2

Announcements (2/3/14)

• Reading for this lecture: Chapter 7.

• HW 4 due Wednesday

– no new HW out this week

• Midterm next Monday

3

Sorting

• Input
– an array A of data records

– a key value in each data record

– a comparison function which imposes a consistent

ordering on the keys

• Output
– “sorted” array A such that

• For any i and j, if i < j then A[i] ≤ A[j]

4

Consistent Ordering

• The comparison function must provide a consistent

ordering on the set of possible keys

– You can compare any two keys and get back an

indication of a < b, a > b, or a = b (trichotomy)

– The comparison functions must be consistent

• If compare(a,b) says a<b, then compare(b,a) must say b>a

• If compare(a,b) says a=b, then compare(b,a) must say b=a

• If compare(a,b) says a=b, then equals(a,b) and equals(b,a)

must say a=b

5

Why Sort?

• Provides fast search:

• Find kth largest element in:

6

Space

• How much space does the sorting algorithm require?

– In-place: no more than the array or at most O(1) addition space

– out-of-place: use separate data structures, copy back

– External memory sorting – data so large that does not fit in
memory

7

Stability

A sorting algorithm is stable if:

– Items in the input with the same value end up in the

same order as when they began.

Input
Adams 1
Black 2
Brown 4
Jackson 2
Jones 4
Smith 1
Thompson 4
Washington 2
White 3
Wilson 3

Unstable sort
Adams 1
Smith 1
Washington 2
Jackson 2
Black 2
White 3
Wilson 3
Thompson 4
Brown 4
Jones 4

Stable Sort
Adams 1
Smith 1
Black 2
Jackson 2
Washington 2
White 3
Wilson 3
Brown 4
Jones 4
Thompson 4

[Sedgewick]

8

Time
How fast is the algorithm?

– requirement: for any i<j, A[i] < A[j]

– This means that you need to at least check on each
element at the very minimum

• Complexity is at least:

– And you could end up checking each element against
every other element

• Complexity could be as bad as:

The big question: How close to O(n) can you get?

9

Sorting: The Big Picture

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:

Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

Demo (with sound!)

• http://www.youtube.com/watch?v=kPRA0W1kECg

10

11

Selection Sort: idea

1. Find the smallest element, put it 1st

2. Find the next smallest element, put it 2nd

3. Find the next smallest, put it 3rd

4. And so on …

12

Try it out: Selection Sort

• 31, 16, 54, 4, 2, 17, 6

13

Selection Sort: Code

void SelectionSort (Array a[0..n-1]) {

for (i=0; i<n; ++i) {

j = Find index of

smallest entry in a[i..n-1]

Swap(a[i],a[j])

}

}

Runtime:

worst case :

best case :

average case :

14

Bubble Sort

• Take a pass through the array
– If neighboring elements are out of order, swap them.

• Repeat until no swaps needed

• Wost & avg case: O(n2)

– pretty much no reason to ever use this algorithm

15

Insertion Sort

1. Sort first 2 elements.

2. Insert 3rd element in order.

• (First 3 elements are now sorted.)

3. Insert 4th element in order

• (First 4 elements are now sorted.)

4. And so on…

16

How to do the insertion?

Suppose my sequence is:

16, 31, 54, 78, 32, 17, 6

And I’ve already sorted up to 78. How to insert 32?

17

Try it out: Insertion sort

• 31, 16, 54, 4, 2, 17, 6

18

Insertion Sort: Code
void InsertionSort (Array a[0..n-1]) {

for (i=1; i<n; i++) {

for (j=i; j>0; j--) {

if (a[j] < a[j-1])

Swap(a[j],a[j-1])

else

break

}

}

Runtime:

worst case :

best case :

average case :

Note: can instead move the

“hole” to minimize copying,

as with a binary heap.

Insertion Sort vs. Selection Sort

• Same worst case, avg case complexity

• Insertion better best-case

– preferable when input is “almost sorted”

• one of the best sorting algs for almost sorted case (also for
small arrays)

19

20

Sorting: The Big Picture

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:

Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

21

Heap Sort: Sort with a Binary Heap

Worst Case Runtime:

In-place heap sort

– Treat the initial array as a heap (via buildHeap)

– When you delete the ith element, put it at arr[n-i]

• It’s not part of the heap anymore!

10/21/2013 22

4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

23

AVL Sort

Worst Case Runtime:

24

“Divide and Conquer”

• Very important strategy in computer science:
– Divide problem into smaller parts

– Independently solve the parts

– Combine these solutions to get overall solution

• Idea 1: Divide array in half, recursively sort left and right
halves, then merge two halves
� known as Mergesort

• Idea 2 : Partition array into small items and large items,
then recursively sort the two sets
� known as Quicksort

25

Mergesort

• Divide it in two at the midpoint

• Sort each half (recursively)

• Merge two halves together

8 2 9 4 5 3 1 6

26

Mergesort Example

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2 9 4 5 3 1 6

2 8 4 9 3 5 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

27

Merging: Two Pointer Method

• Perform merge using an auxiliary array

2 4 8 9 1 3 5 6

Auxiliary array

28

Merging: Two Pointer Method

• Perform merge using an auxiliary array

2 4 8 9 1 3 5 6

1
Auxiliary array

29

Merging: Two Pointer Method

• Perform merge using an auxiliary array

2 4 8 9 1 3 5 6

1 2 3 4 5
Auxiliary array

30

Merging: Finishing Up

i j

target

Starting from here…

i j

target

Left finishes up copy

i j

target

first copy this…

…then this

or

Right finishes up

31

Merging: Two Pointer Method

• Final result

1 2 3 4 5 6 8 9

1 2 3 4 5 6
Auxiliary array

Complexity? Stability?

32

Merging Merge(A[], Temp[], left, mid, right) {

Int i, j, k, l, target

i = left

j = mid + 1

target = left

while (i < mid && j < right) {

if (A[i] < A[j])

Temp[target] = A[i++]

else

Temp[target] = A[j++]

target++

}

if (i > mid) //left completed//

for (k = left to target-1)

A[k] = Temp[k];

if (j > right) //right completed//

k = mid

l = right

while (k > i)

A[l--] = A[k--]

for (k = left to target-1)

A[k] = Temp[k]

}

33

Recursive Mergesort
MainMergesort(A[1..n], n) {

Array Temp[1..n]

Mergesort[A, Temp, 1, n]

}

Mergesort(A[], Temp[], left, right) {

if (left < right) {

mid = (left + right)/2

Mergesort(A, Temp, left, mid)

Mergesort(A, Temp, mid+1, right)

Merge(A, Temp, left, mid, right)

}

}

What is the recurrence relation?

34

Mergesort: Complexity

35

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

36

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

copy

Iterative Mergesort reduces copying

Complexity?

37

Properties of Mergesort

• In-place?

• Stable?

• Sorted list complexity?

• Nicely extends to handle linked lists.

• Multi-way merge is basis of big data sorting.

• Java uses Mergesort on Collections and on

Arrays of Objects.

38

Quicksort

Quicksort uses a divide and conquer strategy, but
does not require the O(N) extra space that
MergeSort does.

Here’s the idea for sorting array S:
1. Pick an element v in S. This is the pivot value.

2. Partition S-{v} into two disjoint subsets, S1 and S2
such that:

• elements in S1 are all ≤ v

• elements in S2 are all ≥ v

3. Return concatenation of QuickSort(S1), v,
QuickSort(S2)

Recursion ends when Quicksort() receives an array of
length 0 or 1.

39

The steps of Quicksort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13
81

92

43 65
31

5726

75
0

S1 S2
partition S

13 4331 57260

S1

81 927565

S2

QuickSort(S1) and

QuickSort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted

[Weiss]

40

Quicksort Example

4 2 3 1 6 9 8

1 93 4 6

1 2 3 4 6 8 9

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

4 6 3 8 1 9 2 5

5

8
2

43

3 4

41

Pivot Picking and Partitioning

The tricky parts are:

• Picking the pivot
– Goal: pick a pivot value so that |S1| and |S2| are

roughly equal in size.

• Partitioning
– Preferably in-place

– Dealing with duplicates

42

Picking the Pivot

43

8 1 4 9 6 3 5 2 7 0

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

Median of Three Pivot

Choose the pivot as the median of three.

Place the pivot and the largest at the right

and the smallest at the left.

medianOf3Pivot(…)

44

Quicksort Partitioning

• Partition the array into left and right sub-arrays such that:

– elements in left sub-array are ≤ pivot

– elements in right sub-array are ≥ pivot

• Can be done in-place with another “two pointer method”

– Sounds like mergesort, but here we are partitioning, not
sorting…

– …and we can do it in-place.

45

Partioning In-place

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

Setup: i = start and j = end of un-partioned elements:

Advance i until element ≥ pivot:

Advance j until element ≤ pivot:

If j > i, then swap:

46

Partioning In-place

0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 8

ij

0 1 4 2 5 3 6 9 7 8

ij

S1 ≤ pivot pivot S2 ≥ pivot

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 5 3 7 9 6 8

i j

Advance i :

Advance j :

i > j, swap

in pivot,

partition done!

Advance i :

Advance j :

Swap :

47

Partition Pseudocode
Partition(A[], left, right) {

v = A[right]; // Assumes pivot value currently at right

i = left; // Initialize left side, right side pointers

j = right-1;

// Do i++, j-- until they cross, swapping values as needed

while (1) {

while (A[i] < v) i++;

while (A[j] > v) j--;

if (i < j) {

Swap(A[i], A[j]);

i++; j--;

}

else

break;

}

Swap(A[i], A[right]); // Swap pivot value into position

return i; // Return the final pivot position

}

Complexity for input size n?

48

Quicksort Pseudocode

Quicksort(A[], left, right) {

if (left < right) {

medianOf3Pivot(A, left, right);

pivotIndex = Partition(A, left+1, right-1);

Quicksort(A, left, pivotIndex – 1);

Quicksort(A, pivotIndex + 1, right);

}

}

Putting the pieces together:

49

QuickSort:

Best case complexity
Quicksort(A[], left, right) {

if (left < right) {

medianOf3Pivot(A, left, right);

pivotIndex = Partition(A, left+1, right-1);

Quicksort(A, left, pivotIndex – 1);

Quicksort(A, pivotIndex + 1, right);

}

}

50

Quicksort(A[], left, right) {

if (left < right) {

medianOf3Pivot(A, left, right);

pivotIndex = Partition(A, left+1, right-1);

Quicksort(A, left, pivotIndex – 1);

Quicksort(A, pivotIndex + 1, right);

}

}

QuickSort:

Worst case complexity

51

QuickSort:

Average case complexity

Turns out to be O(n log n).

See Section 7.7.5 for an idea of the proof.

Don’t need to know proof details for this course.

52

8 6 6 6 6 6 6 6 6 0

0 1 2 3 4 5 6 7 8 9

0 6 6 6 6 6 6 6 6 8

Many Duplicates?

An important case to consider is when an array

has many duplicates.

medianOf3Pivot(…)

53

Partitioning with Duplicates

0 6 6 6 6 6 6 6 6 8

i j

0 6 6 6 6 6 6 6 6 8

i j

0 6 6 6 6 6 6 6 6 8

i j

0 6 6 6 6 6 6 6 6 8

i j

Setup: i = start and j = end of un-partioned elements:

Advance i until element ≥ pivot:

Advance j until element ≤ pivot:

If j > i, then swap:

54

Partitioning with Duplicates

0 6 6 6 6 6 6 6 6 8

i j

Advance i,j:

0 6 6 6 6 6 6 6 6 8

i j

0 6 6 6 6 6 6 6 6 8

i j

0 6 6 6 6 6 6 6 6 8

i j

0 6 6 6 6 6 6 6 6 8

i j

Advance i,j:

Advance i,j:

Swap:

Swap:

0 6 6 6 6 6 6 6 6 8Finish:

i j

55

Partitioning with Duplicates:Take Two

0 6 6 6 6 6 6 6 6 8

i j

0 6 6 6 6 6 6 6 6 8

0 6 6 6 6 6 6 6 6 8

i j

Start i = start and j = end of un-partioned elements:

Advance i until element > pivot (and in bounds):

Finish:

ij

Is this better?

Advance j until element < pivot (and in bounds):

0 6 6 6 6 6 6 6 6 8

ij

56

Partitioning with Duplicates: Upshot

It’s better to stop advancing pointers when elements are
equal to pivot, and then just do swaps.

Complexity of quicksort on an array of identical values?

Can we do better?

57

Important Tweak

Quicksort(A[], left, right) {

if (right – left ≥ CUTOFF) {

medianOf3Pivot(A, left, right);

pivotIndex = Partition(A, left+1, right-1);

Quicksort(A, left, pivotIndex – 1);

Quicksort(A, pivotIndex + 1, right);

} else {

InsertionSort(A, left, right);

}

}

CUTOFF = 10 is reasonable.

Insertion sort is actually better than quicksort on

small arrays. Thus, a better version of quicksort:

58

Properties of Quicksort

• O(N2) worst case performance, but

O(N log N) average case performance.

• Pure quicksort not good for small arrays.

• No iterative version (without using a stack).

• “In-place,” but uses auxiliary storage because of

recursive calls.

• Stable?

• Used by Java for sorting arrays of primitive

types.

