
1

1

CSE 332:

Hash Tables

Richard Anderson, Steve Seitz

Winter 2014

2

Announcements (1/29/14)

• HW #3 due now

• HW #4 out today

• Project 2A due Thursday night.

• Reading for this lecture: Chapter 5.

3

AVL find, insert, delete: O(log n)

Suppose (unique) keys between 0 and 1000.

– Can we do better than O(log n)?

4

Arrays for Dictionaries

Now suppose keys are first, last names

– how big is the key space?

But keyspace is sparsely populated

– <105 active students

5

Hash Tables

• Map keys to a smaller array called a hash table

– via a hash function h(K)

– Find, insert, delete: O(1) on average!

hash table 6

Simple Integer Hash Functions

• key space K = integers

• TableSize = 10

• h(K) =

• Insert: 7, 18, 41, 34

0

1

2

3

4

5

6

7

8

9

2

7

Simple Integer Hash Functions

• key space K = integers

• TableSize = 7

• h(K) = K % 7

• Insert: 7, 18, 41, 34

0

1

2

3

4

5

6

8

Aside: Properties of Mod

To keep hashed values within the size of the table, we

will generally do:

h(K) = function(K) % TableSize

(In the previous examples, function(K) = K.)

Useful properties of mod:

– (a + b) % c = [(a % c) + (b % c)] % c

– (a b) % c = [(a % c) (b % c)] % c

– a % c = b % c → (a – b) % c = 0

9

String Hash Functions?

What’s a good hash function for a string?

10

Some String Hash Functions

key space = strings

 K = s0 s1 s2 … s m-1 (where si are chars: si [0, 128])

1. h(K) = s0 % TableSize

2. h(K) = % TableSize

3. h(K) = % TableSize

1

0

m

i

i

s

1

0

128

m

i

i

i

s

11

Hash Function Desiderata

What are good properties for a hash function?

12

Designing Hash Functions

Often based on modular hashing:

 h(K) = f(K) % P
P is typically the TableSize

P is often chosen to be prime:
– Reduces likelihood of collisions due to patterns in data

– Is useful for guarantees on certain hashing strategies
(as we’ll see)

But what would be a more convenient value of P?

3

13

A Fancier Hash Function

Some experimental results indicate that modular hash

functions with prime tables sizes are not ideal.

Lots of better solutions, e.g.,

jenkinsOneAtATimeHash(String key, int keyLength) {

 hash = 0;

 for (i = 0; i < key_len; i++) {

 hash += key[i];

 hash += (hash << 10);

 hash ^= (hash >> 6);

 }

 hash += (hash << 3);

 hash ^= (hash >> 11);

 hash += (hash << 15);

 return hash % TableSize;

}
14

Collision Resolution

Collision: when two keys map to the same

location in the hash table.

How handle this?

15

Separate Chaining

All keys that map to the same

hash value are kept in a list
(or “bucket”).

0

1

2

3

4

5

6

7

8

9

Insert:

10

22

107

12

42

16

Analysis of Separate Chaining

The load factor, , of a hash table is

 = average # of elems per bucket

N

TableSize

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

42

86 /

12 22 /

𝜆 =

17

Analysis of Separate Chaining

The load factor, , of a hash table is

 = average # of elems per bucket

Average cost of:
– Unsuccessful find?

– Successful find?

– Insert?

N

TableSize

18

Alternative: Use Empty Space in the Table

0

1

2

3

4

5

6

7

8

9

Insert:

38

19

8

109

10

Try h(K).

If full, try h(K)+1.

If full, try h(K)+2.

If full, try h(K)+3.

Etc…

4

19

Open Addressing

The approach on the previous slide is an example of

open addressing:
After a collision, try “next” spot. If there’s another

collision, try another, etc.

Finding the next available spot is called probing:
0th probe = h(k) % TableSize

1th probe = (h(k) + f(1)) % TableSize

2th probe = (h(k) + f(2)) % TableSize

 . . .

ith probe = (h(k) + f(i)) % TableSize

f(i) is the probing function. We’ll look at a few…
20

Linear Probing

f(i) = i

• Probe sequence:

 0th probe = h(K) % TableSize

 1th probe = (h(K) + 1) % TableSize

 2th probe = (h(K) + 2) % TableSize

 . . .

 ith probe = (h(K) + i) % TableSize

21

Linear Probing

0

1

2

3

4

5

6

7

8

9

Insert:

38

19

8

109

10

8

109

10

38

19

Try h(K)

If full, try h(K)+1.

If full, try h(K)+2.

If full, try h(K)+3.

Etc…

22

no collision

no collision

collision in

small cluster

collision in

large cluster

Linear Probing – Clustering

[R. Sedgewick]

23

Analysis of Linear Probing

• For any < 1, linear probing will find an empty slot

• Expected # of probes (for large table sizes)

– unsuccessful search:

– successful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for > 1/2

2
1

1
1

2

1

1

1
1

2

1

24

5

25

Quadratic Probing

f(i) = i2

• Probe sequence:
 0th probe = h(K) % TableSize

 1th probe = (h(K) + 1) % TableSize

 2th probe = (h(K) + 4) % TableSize

 3th probe = (h(K) + 9) % TableSize

 . . .

 ith probe = (h(K) + i2) % TableSize

Less likely to

encounter

Primary

Clustering

26

Quadratic Probing Example

0

1

2

3

4

5

6

7

8

9

Insert:

89
18

49

58

79

27

Another Quadratic Probing Example

TableSize = 7

h(K) = K % 7

insert(76) 76 % 7 =6

insert(40) 40 % 7 =5

insert(48) 48 % 7 =6

insert(5) 5 % 7 =5
insert(55) 55 % 7 =6

insert(47) 47 % 7 =5

3

2

1

0

6

5

4

28

Quadratic Probing:
Success guarantee for < ½

Assertion #1: If T = TableSize is prime and < ½, then
quadratic probing will find an empty slot in T/2 probes

Assertion #2: For prime T and all 0 i,j T/2

and i j,

 (h(K) + i2) % T (h(K) + j2) % T

Assertion #3: Assertion #2 proves assertion #1.

29

Quadratic Probing:
Success guarantee for < ½

We can prove assertion #2 by contradiction.

Suppose that for some i j, 0 i,j T/2 , prime T:

 (h(K) + i2) % T = (h(K) + j2) % T

30

Quadratic Probing: Properties

• For any < ½, quadratic probing will find an empty

slot; for bigger , quadratic probing may find a slot.

• Quadratic probing does not suffer from primary

clustering: keys hashing to the same area is ok

• But what about keys that hash to the same slot?

– Secondary Clustering!

6

31

Double Hashing

Idea: given two different (good) hash functions h(K) and
g(K), it is unlikely for two keys to collide with both of them.

So…let’s try probing with a second hash function:

f(i) = i * g(K)

• Probe sequence:
 0th probe = h(K) % TableSize

 1th probe = (h(K) + g(K)) % TableSize
 2th probe = (h(K) + 2*g(K)) % TableSize

 3th probe = (h(K) + 3*g(K)) % TableSize

 . . .

 ith probe = (h(K) + i*g(K)) % TableSize

32

Double Hashing Example

0

1

2

3

4

5

6

Insert(76) 76 % 7 = 6 and 5 - 76 % 5 =

Insert(93) 93 % 7 = 2 and 5 - 93 % 5 =

Insert(40) 40 % 7 = 5 and 5 - 40 % 5 =

Insert(47) 47 % 7 = 5 and 5 - 47 % 5 =

Insert(10) 10 % 7 = 3 and 5 - 10 % 5 =

Insert(55) 55 % 7 = 6 and 5 - 55 % 5 =

TableSize = 7

h(K) = K % 7

g(K) = 5 – (K % 5)

33

Another Example of Double Hashing

0

1

2

3

4

5

6

7

8

9

Insert these values into the hash

table in this order. Resolve any
collisions with double hashing:

13

28

33

147

43

Hash Functions:

 T = TableSize = 10

 h(K) = K % T

 g(K) = 1 + (K/T) % (T-1)

34

Analysis of Double Hashing

• Double hashing is safe for < 1 for this case:
– h(k) = k % p

– g(k) = q – (k % q)

– 2 < q < p, and p, q are primes

• Expected # of probes (for large table sizes)
– unsuccessful search:

– successful search:

1

1

1 1
log

1
e

35

Deletion in Separate Chaining

How do we delete an element with separate
chaining?

36

Deletion in Open Addressing

0

1

2

3

4

5

6

16

23

59

76

h(k) = k % 7

Linear probing

Delete(23)

Find(59)

Insert(30)

Need to keep track of
deleted items... leave a
“marker”

7

37

When the table gets too full, create a bigger table
(usually 2x as large) and hash all the items from the
original table into the new table.

• When to rehash?
– Separate chaining: full (= 1)

– Open addressing: half full (= 0.5)

– When an insertion fails

– Some other threshold

• Cost of a single rehashing?

Rehashing

38

Rehashing Picture

• Starting with table of size 2, double
when load factor > 1.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25

hashes

rehashes

39

Amortized Analysis of Rehashing

• Cost of inserting n keys is < 3n

• suppose 2k + 1 < n < 2k+1

– Hashes = n

– Rehashes = 2 + 22 + … + 2k = 2k+1 – 2

– Total = n + 2k+1 – 2 < 3n

• Example
– n = 33, Total = 33 + 64 –2 = 95 < 99

Equal objects must hash the same

• The Java library (and your project hash table) make a

very important assumption that clients must satisfy…

 If c.compare(a,b) == 0, then we require

 h.hash(a) == h.hash(b)

• If you ever override equals

– You need to override hashCode also in a consistent way

– See CoreJava book, Chapter 5 for other "gotchas" with equals

10/18/2013 40

41

Hashing Summary

• Hashing is one of the most important data structures.

• Hashing has many applications where operations are
limited to find, insert, and delete.
– But what is the cost of doing, e.g., findMin?

• Can use:
– Separate chaining (easiest)

– Open hashing (memory conservation, no linked list
management)

– Java uses separate chaining

• Rehashing has good amortized complexity.

• Also has a big data version to minimize disk
accesses: extendible hashing. (See book.)

42

Terminology Alert!

• We (and the book) use the terms

– “chaining” or “separate chaining”

– “open addressing”

• Very confusingly

– “open hashing” is a synonym for “chaining”

– “closed hashing” is a synonym for “open addressing”

