CSE 332:
Hash Tables

Richard Anderson, Steve Seitz
Winter 2014

Announcements (1/29/14)

HW #3 due now

HW #4 out today

* Project 2A due Thursday night.

* Reading for this lecture: Chapter 5.

AVL find, insert, delete: O(log n)

Suppose (unique) keys between 0 and 1000.
— Can we do better than O(log n)?

Arrays for Dictionaries
Now suppose keys are first, last names

— how big is the key space?

But keyspace is sparsely populated
— <105 active students

Hash Tables

* Map keys to a smaller array called a hash table
— via a hash function h(K)
— Find, insert, delete: O(1) on average!
hash

keys function buckets
0o

01 | 521-B976
John Smith
02 | 521-1234
03
Lisa smith K .

13
Sandra Dee
T = [14|[521855

15

hash table 5

Simple Integer Hash Functions

» key space K = integers
» TableSize = 10

. h(K) =

* Insert: 7, 18,41, 34

© 00 N O O W N - O

Simple Integer Hash Functions

» key space K = integers
* TableSize =7

« h(K)=K %7

* Insert: 7, 18, 41, 34

o o1 W N P O

Aside: Properties of Mod

To keep hashed values within the size of the table, we
will generally do:

h(K) = function(K) % TableSize
(In the previous examples, function(K) = K.)

Useful properties of mod:
—(@+b)%c=[(@a%c)+(b%c)%c
—(ab)%c=[@a%c)(b%c)%c
—a%c=b%c -(@a-b)%c=0

String Hash Functions?

What's a good hash function for a string?

Some String Hash Functions

key space = strings

K=57S:S, ... S 1 (Wheres; are chars: s; € [0, 128])

1. h(K) = sy % TableSize
L i
2. h(K) Lz si) % TableSize

3. h(K)Z(Esi«lzs'J % TableSize

10

Hash Function Desiderata

What are good properties for a hash function?

1

Designing Hash Functions

Often based on modular hashing:
h(K) = f(K) % P
P is typically the TableSize

P is often chosen to be prime:
— Reduces likelihood of collisions due to patterns in data

— Is useful for guarantees on certain hashing strategies
(as we'll see)

But what would be a more convenient value of P?

12

A Fancier Hash Function

Some experimental results indicate that modular hash
functions with prime tables sizes are not ideal.

Lots of better solutions, e.g.,

jenkinsOneAtATimeHash (String key, int keyLength) {
hash = 0;
for (i = 0; i < key len; i++) (
hash += key[i];
hash += (hash << 10);
hash *= (hash >> 6);
)
hash += (hash << 3);
hash "= (hash >> 11);
hash += (hash << 15);

return hash % TableSize; 13

Collision Resolution

Collision: when two keys map to the same
location in the hash table.

How handle this?

14

Separate Chaining

All keys that map to the same
hash value are kept in a list
(or “bucket”).

© 00O N O O W N - O

15

Analysis of Separate Chaining

The load factor, 4, of a hash tableis 1-—~
TableSize
A = average # of elems per bucket

[fol7]
| pfazl P

] .

© © N ® U~ WN PO

16

Analysis of Separate Chaining

N

The load factor, A, of a hash tableis 1=———
TableSize

A = average # of elems per bucket

Average cost of:
— Unsuccessful find?

— Successful find?
— Insert?

17

Alternative: Use Empty Space in the Table

Insert:
38

19

8

109
10

Try h(K).

If full, try h(K)+1.
If full, try h(K)+2.
If full, try h(K)+3.
Etc...

© 00O N O O W N P O

18

Open Addressing

The approach on the previous slide is an example of
open addressing:

After a collision, try “next” spot. If there’s another
collision, try another, etc.

Finding the next available spotis called probing:
0t probe = h(k) % TableSize
1t probe = (h(k) + f(1)) % TableSize
2th probe = (h(k) + f(2)) % TableSize

it probe = (h(k) + f(i)) % TableSize

f(i) is the probing function. We'll look at a few...
19

Linear Probing
(i) = |

» Probe sequence:
0t probe = h(K) % TableSize
1 probe = (h(K) + 1) % TableSize
2t probe = (h(K) + 2) % TableSize

it" probe = (h(K) + i) % TableSize

20

Linear Probing

Insert:
0 8 38
1 |109 19
8
2 |10 109
3 Try h(K) 1o
4 If full, try h(K)+1.
> If full, try h(K)+2.
6 If full, try h(K)+3.
7 Etc...
8 |38
g |19

21

Linear Probing — Clustering

.L-JL!\!L_._'M_JLJ

o I
smie®) R CEEL m
L s e
no collision — et oL
L= 3 S
uu@_“!l— il et collision in
isi o] LI
no collision ———— { g eyeneiiiei®- small clustor
1 ROLILS o
Ly e e o ‘._J-‘L-_,w“\l' l._]f L
et
ooy o
Ll p R
U T
Ui PRI

AR
{ LI
oL S RIS i
(o118

L collision in
large cluster

L T
.

Ly
! Jw_'u_lt'-‘l&'ﬂ"‘ru

® e‘mqwgml-"\‘-‘”' =

Analysis of Linear Probing

* For any A < 1, linear probing will find an empty slot
« Expected # of probes (for large table sizes)
— unsuccessful search: | 1
5[” vl

1+ ——
(@-2)

— successful search: 1[1 J
2

 Linear probing suffers from primary clustering
» Performance quickly degrades for A > 1/2

23

L i
- [R. Sedgewick] 22
3
2
Eg 4
Q3
i
5—8 3 Chaining
28}
2a 2 .
5 Linear
Z probing

0 02 04 06 08 1
Load factor

24

Quadratic Probing |Lessiikelyto

encounter
. . Primary
—i2

fli) =i Clustering

* Probe sequence:
0t probe = h(K) % TableSize
1t probe = (h(K) + 1) % TableSize
2t probe = (h(K) + 4) % TableSize
3t probe = (h(K) + 9) % TableSize

it probe = (h(K) + i?) % TableSize

25

Quadratic Probing Example

Insert:
89
18
49
58
79

© 00 N O O W N PP O

26

Another Quadratic Probing Example

0 TableSize =7
h(K)=K%7
1
insert(76) 76 % 7 =6
2 insert(40) 40 % 7 =5
insert(48) 48 % 7 =6
3 insert(5) 5%7=5
4 insert(55) 55 % 7 =6
insert(47) 47 % 7 =5
5
6

27

Quadratic Probing:
Success guarantee for A <%

Assertion #1: If T = TableSize is prime and A < %, then
quadratic probing will find an empty slot in < T/2 probes

Assertion #2: Forprime Tand all 0 < i,j < T/2
and i = j,
(h(K) + i%2) $ T # (h(K) + j?) & T

Assertion #3: Assertion #2 proves assertion #1.

28

Quadratic Probing:
Success guarantee for A <%

We can prove assertion #2 by contradiction.

Suppose that for somei#j,0 < i,j < T/2,prime T:

(h(K) +i2) $ T = (h(K) + 32) % T

29

Quadratic Probing: Properties

* For any & <, quadratic probing will find an empty
slot; for bigger A, quadratic probing may find a slot.

* Quadratic probing does not suffer from primary
clustering: keys hashing to the same area is ok

* Butwhat about keys that hash to the same slot?
— Secondary Clustering!

30

Double Hashing

Idea: given two different (good) hash functions h(K) and
g(K), it is unlikely for two keys to collide with both of them.

So...let’s try probing with a second hash function:
f(i) =i* g(K)

* Probe sequence:
0t probe = h(K) % TableSize
1t probe = (h(K) + g(K)) % TableSize
2t probe = (h(K) + 2*g(K)) % TableSize
3t probe = (h(K) + 3*g(K)) % TableSize

it probe = (h(K) + i*g(K)) % TableSize

31

Double Hashing Example

0 TableSize=7
h(K) =K% 7
! 9(K) =5- (K %?5)
2
3 Insert(76) 76 %7=6 and 5-76%5=
Insert(93) 93%7=2 and 5-93%5=
4 Insert(40) 40%7=5 and 5-40%5=
5 Insert(47) 47%7=5 and 5-47%5=
Insert(10) 10%7=3 and 5-10%5=
6 Insert(55) 55% 7=6 and 5-55%5=

32

Another Example of Double Hashing

0 Hash Functions:
T = TableSize = 10
1 h(K) =K% T
2 g(K) =1+ (K/T) % (T-1)
3
4 Insert these values into the hash
table in this order. Resolve any
5 collisions with double hashing:
6 13
’ %
8 147
9 43

33

Analysis of Double Hashing

» Double hashing is safe for 1 < 1 for this case:
—hk)=k%p
-9k =g-(k%aq)
—2<qg<p, and p, q are primes

» Expected # of probes (for large table sizes)
— unsuccessful search:

— successful search:

1 1
“loge| —
yl 1-4 w

Deletion in Separate Chaining

How do we delete an element with separate
chaining?

35

Deletion in Open Addressing

Need to keep track of
76 deleted items... leave a
“marker”

hk)=k%7
Linear probing

0

1 Delete(23)
Find(59)

2 | 16 Insert(30)

3|23

4 | 59

5

6

36

Rehashing

When the table gets too full, create a bigger table
(usually 2x as large) and hash all the items from the
original table into the new table.

* When to rehash?
— Separate chaining: full (A = 1)
— Open addressing: half full (x =0.5)
— When an insertion fails
— Some other threshold
+ Cost of a single rehashing?

37

Rehashing Picture

+ Starting with table of size 2, double
when load factor > 1.

1 hashes
B rehashes

|| I) T T
1 23 45 67 89 1011121314 15161718 1920 212324 25

38

Amortized Analysis of Rehashing

» Cost of inserting n keys is < 3n
 suppose 2k+ 1 <n < 2kt
— Hashes =n
— Rehashes =2 +22+ .. +2k=2k1_2
— Total =n +2k1—-2<3n

» Example
—n=33 Total =33 +64 —2=95<99

39

Equal objects must hash the same

» The Java library (and your project hash table) make a
very important assumption that clients must satisfy...
If c.compare (a,b) == 0, then we require
h.hash(a) == h.hash(b)

 Ifyou ever override equals
— You need to override hashCode also in a consistent way
— See CoreJava book, Chapter 5 for other "gotchas" with equals

10/18/2013 40

Hashing Summary

Hashing is one of the most important data structures.
Hashing has many applications where operations are
limited to find, insert, and delete.

— But what is the cost of doing, e.g., findMin?

Can use:

— Separate chaining (easiest)

— Open hashing (memory conservation, no linked list
management

— Java uses separate chaining
Rehashing has good amortized complexity.

Also has a big data version to minimize disk
accesses: extendible hashing. (See book.)

41

Terminology Alert!

* We (and the book) use the terms
— “chaining” or “separate chaining”
— “open addressing”

+ Very confusingly
— “open hashing” is a synonym for “chaining”
— “closed hashing” is a synonym for “open addressing”

42

