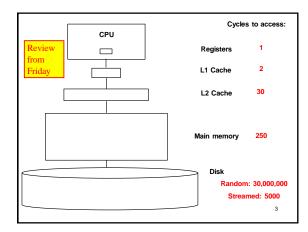
CSE 326: Data Structures B-Trees and B+ Trees

Richard Anderson, Steve Seitz Winter 2014

Announcements

- · This week:
 - HASHING
- · Next week:
- SORTING
- · Upcoming dates
 - · Wednesday: HW 3 Due
 - Thursday (11:59 pm): Project 2, Part A Due
 - · Monday, February 10. Midterm

2



M-ary Search Tree Consider a search tree with branching factor M: Complete tree has height: # hops for find: Runtime of find:

B+ Trees (book calls these B-trees) • Each internal node has (up to) *M*-1 keys: • Order property: - subtree between two keys *x* and *y*contain leaves with *values y* such that *x* ≤ *y* < *y*- Note the "≤" • Leaf nodes have up to *L*sorted keys.

B+ Tree Structure Properties

Internal nodes

- store up to M-1 keys
- have between $\lceil M/2 \rceil$ and M children

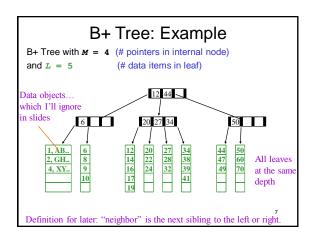
Leaf nodes

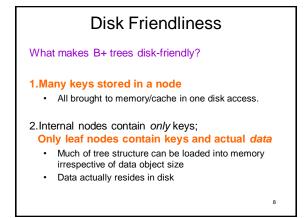
- where data is stored
- all at the same depth
- contain between $\lfloor L/2 \rfloor$ and L data items

Root (special case)

- has between 2 and M children (or root could be a leaf)

6





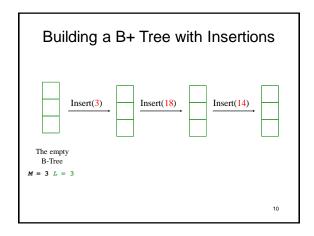
B+ trees vs. AVL trees

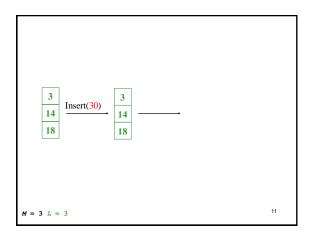
Suppose again we have $n = 2^{30} \approx 10^9$ items:

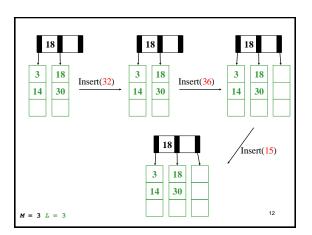
• Depth of AVL Tree

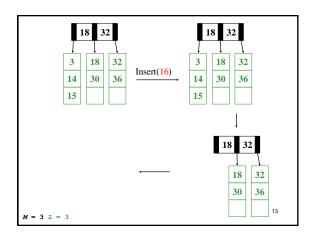
• Depth of B+ Tree with M = 256, L = 256

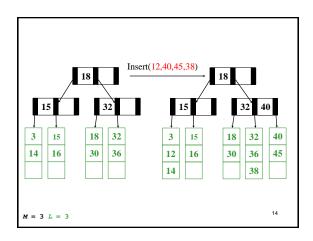
Great, but how to we actually make a B+ tree and keep it balanced...?



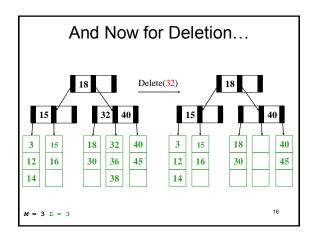


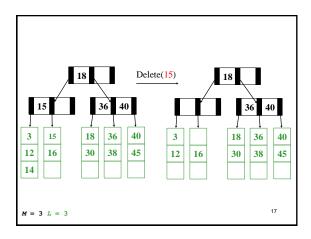


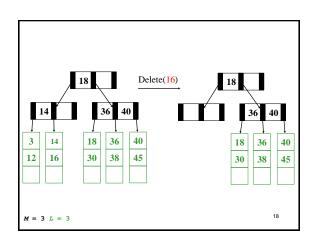


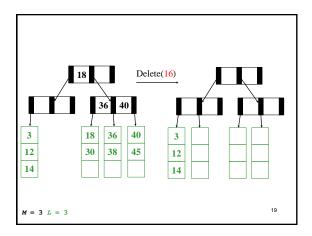


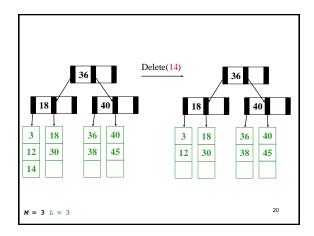
Insertion Algorithm 1. Insert the key in its leaf in 3. If an internal node ends up with sorted order M+1 children, overflow! 2. If the leaf ends up with L+1 Split the node into two nodes: items, overflow! original with Y (M+1)/2/ Split the leaf into two nodes: children with smaller kevs original with $\Upsilon(L+1)/2/$ smaller keys new one with ≤ (M+1) /2f children with larger keys new one with \leq (L+1)/2f- Add the new child to the parent larger keys If the parent ends up with M+1 Add the new child to the parent items, overflow! If the parent ends up with M+1 4. Split an overflowed root in two children, overflow! and hang the new nodes under a new root This makes the tree deeper! 5. Propagate keys up tree.

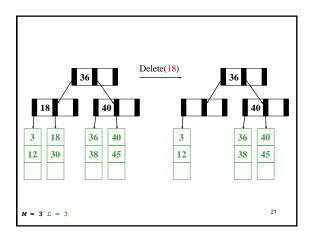


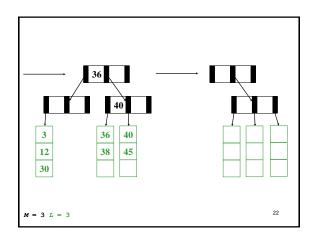












Deletion Algorithm

- 1. Remove the key from its leaf
- 2. If the leaf ends up with fewer than YL/2/ items, underflow!
 - Adopt data from a neighbor; update the parent
 - If adopting won't work, delete node and merge with neighbor
 - If the parent ends up with fewer than YM/2/ children, underflow!

23

Deletion Slide Two 3. If an internal node ends up with fewer than YM/2/ children, underflow! - Adopt from a neighbor; update the parent - If adoption won't work, merge with neighbor - If the parent ends up with fewer than YM/2/ children, underflow! 4. If the root ends up with only one child, make the child the new root of the tree 5. Propagate keys up through tree. This reduces the height of the tree!

Thinking about B+ Trees

- B+ Tree insertion can cause (expensive) splitting and propagation up the tree
- B+ Tree deletion can cause (cheap) adoption or (expensive) merging and propagation up the tree
- Split/merge/propagation is rare if M and L are large (Why?)
- Pick branching factor M and data items/leaf L such that each node takes one full page/block of memory/disk.

25

Complexity

- · Find:
- · Insert:
 - find:
 - Insert in leaf:
 - split/propagate up:
- Claim: O(M) costs are negligible

20

Tree Names You Might Encounter

- "B-Trees"
 - · More general form of B+ trees, allows data at internal nodes too
 - Range of children is (key1,key2) rather than [key1, key2)
- B-Trees with M = 3, L = x are called 2-3 trees
 - · Internal nodes can have 2 or 3 children
- B-Trees with M = 4, L = x are called 2-3-4 trees
 - Internal nodes can have 2, 3, or 4 children

27