CSE 326: Data Structures B-Trees and B+ Trees

Richard Anderson, Steve Seitz Winter 2014

Announcements

- Project 2 partners — due today (Friday)

Traversing very large datasets

Suppose $n=2^{30} \approx 10^{9}$.
How many (worst case) hops through the tree to find a node?

- BST

-AVL $\log _{\phi} 10^{9}=43$

Memory considerations

What is in a tree node?

Suppose the data is 1 KB . We've got 10^{9} nodes
How much space does the tree take? $\$$ How much of the data can live in 1GB of RAM? 0.1\%

Cycles to access:

Registers 1
L1 Cache 2

L2 Cache 30

Main memory 250

Disk
Random: 30,000,000
Streamed: 5000

Minimizing random disk access

In our example, almost all of our data structure is on disk.

Thus, hopping through a tree amounts to random accesses to disk. Ouch!

How can we address this problem?
moxinife locality vimimito random alcess

M-ary Search Tree

Consider a search tree with branching factor M :

Complete tree has height:
\# hops for find:
Runtime of find:

B+ Trees

(book calls these B-trees)

- Each internal node has (up to) $M-1$ keys:
- Order property:
- subtree between two keys x and y contain leaves with values v such that $x \leq v<y$
- Note the " \leq "
- Leaf nodes have up to L sorted keys.

B+ Tree Structure Properties

Internal nodes

- store up to M-1 keys
- have between $\lceil M / 2\rceil$ and M children

Leaf nodes

- where data is stored
- all at the same depth
- contain between $[L / 2\rceil$ and L data items

Root (special case)

- has between 2 and \boldsymbol{M} children (or root could be a leaf)

B+ Tree: Example

B+ Tree with $\boldsymbol{M}=4$ (\# pointers in internal node) and $L=5$ (\# data items in leaf)

Definition for later: "neighbor" is the next sibling to the left or right.

Disk Friendliness

What makes B+ trees disk-friendly?
1.Many keys stored in a node

- All brought to memory/cache in one disk access.

2. Internal nodes contain only keys; Only leaf nodes contain keys and actual data

- Much of tree structure can be loaded into memory irrespective of data object size
- Data actually resides in disk

B+ trees vs. AVL trees

Suppose again we have $n=2^{30} \approx 10^{9}$ items:

- Depth of AVL Tree
- Depth of B+ Tree with $M=256, L=256$

Great, but how to we actually make a B+ tree and keep it balanced...?

Building a B+ Tree with Insertions

The empty B-Tree
$M=3 L=3$

| 3 |
| :---: | :---: |
| 14 |
| 18 |$\xrightarrow{\text { Insert(30) }}$| 3 |
| :---: |
| 14 |
| 18 |

$$
M=3 L=3
$$

$$
M=3 I=3
$$

$$
M=3 L=3
$$

$$
M=3 L=3
$$

Insertion Algorithm

1. Insert the key in its leaf in sorted order
2. If the leaf ends up with $L+1$ items, overflow!

- Split the leaf into two nodes:
- original with $\Upsilon(L+1) / 2$ smaller keys
- new one with $\leq(L+1) / 2 f$ larger keys
- Add the new child to the parent
- If the parent ends up with $M+1$ children, overflow!

This makes the tree deeper!
3. If an internal node ends up with M+1 children, overflow!

- Split the node into two nodes:
- original with $\Upsilon(M+1) / 2$ children with smaller keys
- new one with $\leq(M+1) / 2 f$ children with larger keys
- Add the new child to the parent
- If the parent ends up with $\boldsymbol{M + 1}$ items, overflow!

4. Split an overflowed root in two and hang the new nodes under a new root
5. Propagate keys up tree.

And Now for Deletion...

$M=3 L=3$

$$
M=3 L=3
$$

$M=3 L=3$

$M=3 L=3$

$$
M=3 L=3
$$

$$
M=3 L=3
$$

$$
M=3 L=3
$$

Deletion Algorithm

1.Remove the key from its leaf
2. If the leaf ends up with fewer than $\mathrm{r}_{\mathrm{L} / 2}$ items, underflow!

- Adopt data from a neighbor; update the parent
- If adopting won't work, delete node and merge with neighbor
- If the parent ends up with fewer than $\mathrm{r}_{\mathbf{m} / 2 /}$ children, underflow!

Deletion Slide Two

3. If an internal node ends up with fewer than $\mathrm{r}_{\mathrm{m} / 2} 2$ children, underflow!

- Adopt from a neighbor; update the parent
- If adoption won't work, merge with neighbor
- If the parent ends up with fewer than $r_{m / 2}$ children, underflow!

4. If the root ends up with only one child, make the child the new root of the tree
5. Propagate keys up through tree.

This reduces the height of the tree!

Thinking about B+ Trees

- B+ Tree insertion can cause (expensive) splitting and propagation up the tree
- B+ Tree deletion can cause (cheap) adoption or (expensive) merging and propagation up the tree
- Split/merge/propagation is rare if M and L are large (Why?)
- Pick branching factor M and data items/leaf L such that each node takes one full page/block of memory/disk.

Complexity

- Find:
- Insert:
- find:
- Insert in leaf:
- split/propagate up:
- Claim: $\mathrm{O}(\mathrm{M})$ costs are negligible

Tree Names You Might Encounter

- "B-Trees"
- More general form of B+ trees, allows data at internal nodes too
- Range of children is (key1,key2) rather than [key1, key2)
- B-Trees with $M=3, L=\mathbf{x}$ are called 2-3 trees
- Internal nodes can have 2 or 3 children
- B-Trees with $M=4, L=x$ are called 2-3-4 trees
- Internal nodes can have 2,3 , or 4 children

