CSE 326: Data Structures AVL Trees

Richard Anderson, Steve Seitz Winter 2014

Announcements

- HW 2 due now
- HW 3 out today

Balanced BST

Complexity of operations depend on tree height

For a BST with n nodes

- Want height to be ~ log n
- "Balanced"

But balancing cost must be low

How about complete trees?

This worked for heaps

- balance maintained via percolate up/down
- Let's try with BST

(add 14 in rightmost leaf, percolate up)

Balancing Trees

- Many algorithms exist for keeping trees balanced
 - Adelson-Velskii and Landis (AVL) trees
 - Splay trees and other self-adjusting trees
 - B-trees and other multiway search trees (for very large trees)
- Today we will talk about AVL trees...

The AVL Tree Data Structure

Ordering property

Same as for BST

Structural properties

- 1. Binary tree property (0,1, or 2 children)
- 2. Heights of left and right subtrees of *every node* **differ by at most 1**

Result: worst case height: O(log n)

Recursive Height Calculation

Recall: height is max number of edges from root to a leaf

What is the height at A?

Define: height(null) = -1

Goal

$h \in O(\log n)$

- we will do this by showing: $n + 1 > \phi^h \implies \log(n+1) > \log($
- - ϕ is the golden ratio, $(1+\sqrt{5})/2$

-Since the Renaissance, many artists and architects have proportioned their work (e.g., length:height) to approximate the golden ratio ϕ

Minimum Size of an AVL Tree

- $n \ge m(h) = minimum \# of nodes in an AVL tree of height h.$
- Base cases:

$$-m(0) = 1$$
 $m(1) = 2$ $m(2)$

$$m(1) = 2$$

Inductive case:

Inductive case:
$$- m(h) = m(h-2) + m(h-1) + 1$$

Can prove:

$$- m(h) > \phi^h - 1$$

Proof that $m(h) > \phi^h$ -1

•Base cases h=0,1:

$$m(0) = 1 > \phi^0 - 1 = 0$$
 $m(1) = 2 > \phi^1 - 1 \approx 0.62$

•Assume true for h-2 and h-1:

$$m(h-2) > \phi^{h-2} - 1$$
 $m(h-1) > \phi^{h-1} - 1$

•Induction step:

$$m(h) = m(h-1) + m(h-2) + 1 > (\phi^{h-1} - 1) + (\phi^{h-2} - 1) + 1$$

$$(\phi^{h-1} - 1) + (\phi^{h-2} - 1) + 1 = \phi^{h-2} (\phi + 1) - 1$$

$$= \phi^{h-2} (\phi^2) - 1$$

$$= \phi^h - 1$$

$$\rightarrow m(h) \not \downarrow \phi^h - 1$$

Maximum Height of an AVL Tree

Suppose we have n nodes in an AVL tree of height h. We can now say:

$$\sim m(h) > \phi^h - 1$$

What does this say about n?

$$n > b^{h - 1}$$

What does this say about the complexity of h? $h \notin G(\log n)$ $h \notin Z \cap + | \Rightarrow | \log_2 h \notin Z \log_2 h + | \Rightarrow | \otimes g \otimes_2 h + | \otimes g \otimes_2 h + | \Rightarrow | \otimes g \otimes_2 h + |$

Testing the Balance Property

We need to be able to:

- 1. Track Balance
- 2. Detect Imbalance
- 3. Restore Balance

Is this AVL tree balanced? How about after insert(30)?

An AVL Tree

AVL trees: find, insert

AVL find:

same as BST find.

AVL insert:

same as BST insert, except may need to "fix"
 the AVL tree after inserting new value.

We will consider the 4 fundamental insertion cases...

Case #1: left-left insertion (zig)

Case #1: repair with single rotation

Single rotation example

Case #2: left-right insertion

Case #2: repair with single rotation?

Case #2: trying again

Case #2: trying again

Can also do this in two rotations

second rotation

Double rotation example

Double rotation, step 1

Double rotation, step 2

Case #3: right-left insertion

Case #4: right-right insertion

AVL tree case summary

Let a be the node where an imbalance occurs.

Four cases to consider. The insertion below a is in the

- left child's left subtree. (zig)
- 2. left child's right subtree. (zig-zag)
- 3. right child's left subtree. (zig-zag)
- 4. right child's right subtree. (zig)

Cases 1 & 4 are solved by a single rotation:

Rotate between a and child

Cases 2 & 3 are solved by a double rotation:

- 1. Rotate between a's child and grandchild
- 2. Rotate between a and a's new child

Single and Double Rotations:

Consider inserting one of {1, 4, 6, 8, 10, 12, 14} Which values require:

1. single rotation?

2. double rotation?

3. no rotation?

Insertion procedure

- 1. Find spot for new key
- 2. Hang new node there with this key
- 3. Search back up the path for imbalance
- 4. If there is an imbalance:
- cases #1,#4: Perform single rotation and exit
 cases #2,#3: Perform double rotation and exit

Both rotations restore subtree height to value before insert. Hence only type of rotation is sufficient per insert!

More insert examples

Insert(33) 0 Unbalanced? How to fix?

Single Rotation

More insert examples

Suppose we didn't do that last insert.

Now do:
Insert(18)

Unbalanced?

How to fix?

Single Rotation (oops!)

Double Rotation

More insert examples

Insert(3)

Unbalanced?

How to fix?

Insert into an AVL tree: 5, 8, 9, 4, 2, 7, 3, 1

AVL complexity

What is the worst case complexity of a find?

What is the worst case complexity of an insert?

$$\frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}$$

What is the worst case complexity of buildTree?