
1

CSE 326: Data Structures

AVL Trees

Richard Anderson, Steve Seitz

Winter 2014

2

Announcements

• HW 2 due now

• HW 3 out today

28

Balanced BST

Complexity of operations depend on tree height

For a BST with n nodes

• Want height to be ~ log n

• “Balanced”

But balancing cost must be low

4

How about complete trees?

This worked for heaps

• balance maintained via percolate up/down

• Let’s try with BST

(add 14 in rightmost leaf, percolate up)

1773

155

10

1 4

13

6

5

Balancing Trees

• Many algorithms exist for keeping trees balanced

– Adelson-Velskii and Landis (AVL) trees

– Splay trees and other self-adjusting trees

– B-trees and other multiway search trees (for
very large trees)

• Today we will talk about AVL trees…

6

The AVL Tree Data Structure

4

121062

115

8

14137 9

Ordering property

– Same as for BST

Structural properties

1. Binary tree property

(0,1, or 2 children)

2. Heights of left and right
subtrees of every node

differ by at most 1

Result: worst case height: O(log n)
15

7

Recursive Height Calculation

Recall: height is max number

of edges from root to a leaf

What is the height at A?

Define: height(null) = -1

A

hleft hright

8

111

84

6

3

1171

84

6

2

5

AVL trees or not?

10 12

7

9

Goal

h ∈ O(log n)

• we will do this by showing: n + 1 > φh

• What’s φ?
φ is the golden ratio, (1+ √5)/2

–Since the Renaissance, many artists and architects have

proportioned their work (e.g., length:height) to approximate the

golden ratio φ

The golden

section:

11

Minimum Size of an AVL Tree

• n > m(h) = minimum # of nodes in an AVL tree of height h.

• Base cases:

– m(0) = m(1) =

• Inductive case:

– m(h) =

• Can prove:

– m(h) > φh - 1

h-1h-1

h

h-1h-2

h

12

Proof that m(h) > φh -1
•Base cases h=0,1:

m(0) = 1 > φ0 -1 = 0 m(1) = 2 > φ1-1 ≈ 0.62

•Assume true for h-2 and h-1:

m(h-2) > φh-2 – 1 m(h-1) > φh-1 – 1

•Induction step:

m(h) = m(h-1) + m(h-2) + 1 > (φh-1 - 1) + (φh-2 - 1) + 1

(φh-1 - 1) + (φh-2 - 1) + 1 = φh-2 (φ +1) – 1

= φh-2 (φ2) – 1

= φh - 1

� m(h) > φh - 1

13

Maximum Height of an AVL Tree

Suppose we have n nodes in an AVL tree of height h.

We can now say:

m(h) > φh – 1

What does this say about n?

What does this say about the complexity of h?

14

Testing the Balance Property

2092

155

10

7

We need to be able to:

1. Track Balance

2. Detect Imbalance

3. Restore Balance

Is this AVL tree balanced?
How about after insert(30)?

15

An AVL Tree

20

92 15

5

10

30

7

0

0

001

2 1

3 10

3

data

height

children

16

AVL trees: find, insert

• AVL find:

– same as BST find.

• AVL insert:

– same as BST insert, except may need to “fix”

the AVL tree after inserting new value.

We will consider the 4 fundamental
insertion cases…

17

Case #1: left-left insertion (zig)
a

Z

Y

b

X

h h

h

a

Z

Y

b
h

h

X

Insert on left child’s left

h+1

h+2

18

Case #1: repair with single rotation

a

b

X < b < Y < a < Z

h+1

a

Z

Y

b
h

h

X

h+2

h+3

single rotation

Height of tree before/after? Effect on Ancestors? Cost?

19

Single rotation example

104

228

15

3 6

19

17 20

24

16

104

8

15

3 6

20

Case #2: left-right insertion
a

Z

Y

b

X

h+1

h

h

a

Z

bh

h

X Y

Insert on left child’s right

h

h+2

21

Case #2: repair with single rotation?

a

Z

b

h+1

h

h

X < b < Y < a < Z

Are we better off now?

a

Z

b
h

h

X

X

Y

Y

h+1

Single rotation

h+2

h+3

22

Case #2: trying again

a

Z

b

X

c

U V

h-1

h

h

h-1

a

Z

b

X

c

V

h-1

h

h

U

Insert on left child’s right (at U or V)

Let’s break subtree Y

into pieces:

h

h+1
h+2

23

Case #2: trying again

a

Z

b

X

c

U V

h-1

h

h

h

Insert on left child’s right (at U or V)

Let’s break subtree Y

into pieces:

h+1

h+2
h+3

c

24

Can also do this in two rotations

a

Z
b

X

c

V

h-1

h

h h

a

Z

b

X

c

V

h-1

h

h

h

X < b < U < c < V < a < Z

U

U

First rotation

h+1

h+2
h+3

25

second rotation

a

Z

b

X

c

V

h-1 hh h

a

Z
b

X

c

V

h-1

h

h h

U

U

Second rotation

h+1

h+2

h+3

h+1

26

Double rotation example

15

5

104

8

15

3 6

19

17

2016

22

24

19

17

2016

22

24

27

Double rotation, step 1

10

8

15

5

104

8

15

3 6

19

17

2016

22

24

19

17

2016

22

24

28

Double rotation, step 2

106

8

15

4

3 5

15

19

17

2016

22

24

19

17

2016

22

24

29

Case #3: right-left insertion

a

X

b

Z

c
h-1

h
h

c

Z

a

X

b
h-1 hh h

h

VU

VU

h+1

h+2

h+3

h+1 h+1

h+2

Double rotation

30

Case #4: right-right insertion

a

X

b

Y

h+1h

h

Z

a

X

b

Y

h

h+1

h

Z

h+2

h+3

h+1

h+2

Single rotation

31

AVL tree case summary
Let a be the node where an imbalance occurs.

Four cases to consider. The insertion below a is in the

1. left child’s left subtree. (zig)

2. left child’s right subtree. (zig-zag)

3. right child’s left subtree. (zig-zag)

4. right child’s right subtree. (zig)

Cases 1 & 4 are solved by a single rotation:

1. Rotate between a and child

Cases 2 & 3 are solved by a double rotation:

1. Rotate between a’s child and grandchild

2. Rotate between a and a’s new child

32

9

5

2

11

7

1. single rotation?

2. double rotation?

3. no rotation?

Consider inserting one of {1, 4, 6, 8, 10, 12, 14}
Which values require:

Single and Double Rotations:

13

30

33

Insertion procedure

1. Find spot for new key

2. Hang new node there with this key

3. Search back up the path for imbalance

4. If there is an imbalance:

cases #1,#4: Perform single rotation and exit

cases #2,#3: Perform double rotation and exit

Both rotations restore subtree height to value before insert.
Hence only type of rotation is sufficient per insert!

34

More insert examples

2092

155

10

3017

Insert(33)

12

How to fix?

Unbalanced?

0

0

100

1 2

3

0

35

Single Rotation

2092

155

10

3017

12

33

0

0

200

1 3

4

1

0

92

5

10

0 0

1

3

36

More insert examples

Suppose we didn’t

do that last insert.

Now do:

Insert(18)

2092

155

10

3017

12

0

0

100

1 2

3

0

How to fix?

Unbalanced?

37

Single Rotation (oops!)

2092

155

10

3017

12

0

1

200

1 3

4

0

92

5

10

0 0

1

4

18

0

38

Double Rotation

2092

155

10

3017

12

0

1

200

1 3

4

0

18

0

92

5

10

0 0

1

4

39

More insert examples

2092

175

10

30

15

0

0

110

1 2

3

0

12

0

18

Insert(3)

How to fix?

Unbalanced?

40

Insert into an AVL tree: 5, 8, 9, 4, 2, 7, 3, 1

41

AVL complexity

What is the worst case complexity of a find?

What is the worst case complexity of an insert?

What is the worst case complexity of buildTree?

