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Announcements

• HW 2 due now

• HW 3 out today
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Balanced BST

Complexity of operations depend on tree height

For a BST with n nodes

• Want height to be ~ log n 

• “Balanced”

But balancing cost must be low
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How about complete trees?

This worked for heaps

• balance maintained via percolate up/down

• Let’s try with BST

(add 14 in rightmost leaf, percolate up)
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Balancing Trees

• Many algorithms exist for keeping trees balanced

– Adelson-Velskii and Landis (AVL) trees 

– Splay trees and other self-adjusting trees

– B-trees and other multiway search trees (for 
very large trees)

• Today we will talk about AVL trees…
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The AVL Tree Data Structure
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Ordering property

– Same as for BST

Structural properties

1. Binary tree property 

(0,1, or 2 children)

2. Heights of left and right 
subtrees of every node

differ by at most 1

Result:  worst case height: O(log n)
15
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Recursive Height Calculation

Recall: height is max number 

of edges from root to a leaf

What is the height at A?  

Define: height(null) = -1

A

hleft hright
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AVL trees or not?
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Goal

h ∈ O(log n)

• we will do this by showing:  n + 1 > φh

• What’s φ?
φ is the golden ratio, (1+ √5)/2

–Since the Renaissance, many artists and architects have 

proportioned their work (e.g., length:height) to approximate the 

golden ratio φ

The golden 

section:
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Minimum Size of an AVL Tree

• n > m(h) = minimum # of nodes in an AVL tree of height h.

• Base cases:

– m(0) =        m(1) =   

• Inductive case:

– m(h) =

• Can prove:

– m(h) > φh - 1

h-1h-1

h

h-1h-2

h
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Proof that m(h) > φh -1
•Base cases h=0,1: 

m(0) = 1 > φ0 -1 = 0             m(1) = 2 > φ1-1 ≈ 0.62

•Assume true for h-2 and h-1:

m(h-2) > φh-2 – 1          m(h-1) > φh-1 – 1

•Induction step:

m(h) = m(h-1) + m(h-2) + 1  >  (φh-1 - 1) + (φh-2 - 1) + 1

(φh-1 - 1) + (φh-2 - 1) + 1 = φh-2 (φ +1) – 1      

= φh-2 (φ2) – 1            

= φh - 1

� m(h) > φh - 1
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Maximum Height of an AVL Tree

Suppose we have n nodes in an AVL tree of height h.

We can now say:

m(h) > φh – 1

What does this say about n?

What does this say about the complexity of h?
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Testing the Balance Property
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We need to be able to:

1.  Track Balance

2.  Detect Imbalance

3.  Restore Balance

Is this AVL tree balanced?
How about after insert(30)?
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An AVL Tree
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AVL trees: find, insert

• AVL find: 

– same as BST find.

• AVL insert: 

– same as BST insert, except may need to “fix” 

the AVL tree after inserting new value.

We will consider the 4 fundamental 
insertion cases…



17

Case #1: left-left insertion (zig)
a

Z

Y

b
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Insert on left child’s left

h+1
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Case #1: repair with single rotation

a

b

X < b < Y < a < Z

h+1

a

Z

Y

b
h

h

X

h+2

h+3

single rotation

Height of tree before/after?    Effect on Ancestors?    Cost?
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Single rotation example
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Case #2: left-right insertion
a

Z

Y

b

X
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Insert on left child’s right

h
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Case #2: repair with single rotation?

a

Z

b

h+1

h

h

X < b < Y < a < Z

Are we better off now?
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Z

b
h
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X

X
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h+1

Single rotation

h+2

h+3
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Case #2: trying again

a

Z

b

X

c

U V

h-1

h

h

h-1

a

Z

b

X

c

V

h-1

h

h

U

Insert on left child’s right (at U or V)

Let’s break subtree Y 

into pieces:

h

h+1
h+2
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Case #2: trying again

a

Z

b

X

c

U V

h-1

h

h

h

Insert on left child’s right (at U or V)

Let’s break subtree Y 

into pieces:

h+1

h+2
h+3

c
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Can also do this in two rotations

a

Z
b

X

c

V

h-1

h

h h

a

Z

b

X

c

V

h-1

h

h

h

X < b < U < c < V < a < Z

U

U

First rotation

h+1

h+2
h+3
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second rotation

a

Z
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Double rotation example
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Double rotation, step 1

10

8

15

5

104

8

15

3 6

19

17

2016

22

24

19

17

2016

22

24



28

Double rotation, step 2
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Case #3: right-left insertion

a

X

b

Z

c
h-1

h
h

c

Z

a

X

b
h-1 hh h

h

VU

VU

h+1

h+2

h+3

h+1 h+1

h+2

Double rotation
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Case #4: right-right insertion

a

X

b

Y
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Single rotation
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AVL tree case summary
Let a be the node where an imbalance occurs.

Four cases to consider.  The insertion below a is in the

1. left child’s left subtree. (zig)

2. left child’s right subtree. (zig-zag)

3. right child’s left subtree. (zig-zag)

4. right child’s right subtree. (zig)

Cases 1 & 4 are solved by a single rotation:

1. Rotate between a and child

Cases 2 & 3 are solved by a double rotation:

1. Rotate between a’s child and grandchild

2. Rotate between a and a’s new child
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1. single rotation?

2. double rotation?

3. no rotation?

Consider inserting one of  {1, 4, 6, 8, 10, 12, 14}
Which values require:

Single and Double Rotations:

13

30
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Insertion procedure

1. Find spot for new key

2. Hang new node there with this key

3. Search back up the path for imbalance

4. If there is an imbalance:

cases #1,#4: Perform single rotation and exit

cases #2,#3: Perform double rotation and exit

Both rotations restore subtree height to value before insert.
Hence only type of rotation is sufficient per insert!
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More insert examples

2092

155

10

3017

Insert(33)

12

How to fix?

Unbalanced?
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Single Rotation
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More insert examples

Suppose we didn’t

do that last insert.

Now do:

Insert(18)
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Single Rotation (oops!)
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Double Rotation
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More insert examples
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Insert(3)

How to fix?

Unbalanced?
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Insert into an AVL tree: 5, 8, 9, 4, 2, 7, 3, 1
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AVL complexity

What is the worst case complexity of a find?

What is the worst case complexity of an insert?

What is the worst case complexity of buildTree?


