CSE 326: Data Structures AVL Trees

Richard Anderson, Steve Seitz Winter 2014

1

Announcements

- HW 2 due now
- HW 3 out today

Balanced BST

Complexity of operations depend on tree height

For a BST with n nodes

- Want height to be ~ log n
- "Balanced"

But balancing cost must be low

How about complete trees?

This worked for heaps

- balance maintained via percolate up/down
- Let's try with BST

(add 14 in rightmost leaf, percolate up)

Balancing Trees

- Many algorithms exist for keeping trees balanced
 - Adelson-Velskii and Landis (AVL) trees
 - Splay trees and other *self-adjusting* trees
 - B-trees and other multiway search trees (for very large trees)
- Today we will talk about AVL trees...

The AVL Tree Data Structure

Ordering property

Recursive Height Calculation

Recall: height is max number of edges from root to a leaf

What is the height at A? $M \leq (h_{eff}, h_{right}) \neq [$

Define: height(null) = -1

Goal

$h \in O(\log n)$

- we will do this by showing: $n + 1 > \phi^h \Rightarrow \log(n+1) > \log_{\phi} \phi^h = h$ What's ϕ ?

 ϕ is the golden ratio, $(1 + \sqrt{5})/2$

-Since the Renaissance, many artists and architects have proportioned their work (e.g., length:height) to approximate the golden ratio ϕ

Minimum Size of an AVL Tree

- n > m(h) = minimum # of nodes in an AVL tree of height h.
- Base cases: 0 $-m(0) = | m(1) = 2 m(2)^{-4} 0^{$
- Can prove:

$$- m(h) > \phi^h - 1$$

Proof that $m(h) > \phi^h - 1$

•Base cases *h*=0,1:

$$m(0) = 1 > \phi^0 - 1 = 0$$
 $m(1) = 2 > \phi^1 - 1 \approx 0.62$

•Assume true for *h*-2 and *h*-1:

$$m(h-2) > \phi^{h-2} - 1$$
 $m(h-1) > \phi^{h-1} - 1$

•Induction step:

$$\begin{split} m(h) &= m(h-1) + m(h-2) + 1 > (\phi^{h-1} - 1) + (\phi^{h-2} - 1) + 1 \\ (\phi^{h-1} - 1) + (\phi^{h-2} - 1) + 1 &= \phi^{h-2} (\phi + 1) - 1 \\ &= \phi^{h-2} (\phi^2) - 1 \\ &= \phi^h - 1 \\ \rightarrow m(h) > \phi^h - 1 \end{split}$$

12

/

Maximum Height of an AVL Tree

Suppose we have *n* nodes in an AVL tree of height *h*. We can now say:

 $h \geq m(h) > \phi^h - 1$

What does this say about n? n > 0 - 1 What does this say about the complexity of h? $h \in O(\log n) - \operatorname{slidt} q$ $n \in O(\log n) - \operatorname{slidt} q$ $n \in 2^{h+1} - 1$ (perfect free) $\Rightarrow 2^{h+1} \ge n+1 \Longrightarrow \log_2 2^{h+1} \ge \log_2 (n+1)$ $h \in \Omega(\log n)$ $h \in \Omega(\log n)$ $h \in \Omega(\log n)$

Testing the Balance Property

We need to be able to:

- 1. Track Balance
- 2. Detect Imbalance
- 3. Restore Balance

Is this AVL tree balanced? How about after insert(30)?

An AVL Tree

AVL trees: find, insert

- AVL find:
 - same as BST find.
- AVL insert:
 - same as BST insert, *except* may need to "fix" the AVL tree after inserting new value.

We will consider the 4 fundamental insertion cases...

Case #1: repair with single rotation

Height of tree before/after? Effect on Ancestors? Cost?

Single rotation example

19

Case #2: left-right insertion

Insert on left child's right

Case #2: repair with single rotation?

Case #2: trying again

Case #2: trying again

Can also do this in two rotations h+3 a **h+2** h b h+1 h С **h-1** Ζ h Х **N**7 First rotation X < b < U < c < V < a < Z a h С **h-1** b h Ζ h **X** 7 IJ Х

24

second rotation

25

Double rotation example

Double rotation, step 1

Double rotation, step 2

Case #3: right-left insertion

29

AVL tree case summary

Let *a* be the node where an imbalance occurs. Four cases to consider. The insertion below *a* is in the

- 1. left child's left subtree. (zig)
- 2. left child's right subtree. (zig-zag)
- 3. right child's left subtree. (zig-zag)
- 4. right child's right subtree. (zig)

Cases 1 & 4 are solved by a single rotation:

1. Rotate between *a* and child

Cases 2 & 3 are solved by a double rotation:

- 1. Rotate between *a*'s child and grandchild
- 2. Rotate between *a* and *a*'s new child

Single and Double Rotations:

Consider inserting one of {1, 4, 6, 8, 10, 12, 14} Which values require:

1. single rotation? 9 5 3 ()

2. double rotation?

3. no rotation?

Insertion procedure

- 1. Find spot for new key
- 2. Hang new node there with this key
- 3. Search back up the path for imbalance
- 4. If there is an imbalance:
 - cases #1,#4: Perform single rotation and exit

cases #2,#3: Perform double rotation and exit

Both rotations restore subtree height to value before insert. Hence only type of rotation is sufficient per insert!

More insert examples

Unbalanced?

How to fix?

Single Rotation

More insert examples

How to fix?

Single Rotation (oops!)

Double Rotation

More insert examples

How to fix?

Insert into an AVL tree: 5, 8, 9, 4, 2, 7, 3, 1

AVL complexity

What is the worst case complexity of a find?

What is the worst case complexity of an insert?

What is the worst case complexity of buildTree?