# CSE 326: Data Structures AVL Trees 

Richard Anderson, Steve Seitz
Winter 2014

## Announcements

- HW 2 due now
- HW 3 out today


## Balanced BST

Complexity of operations depend on tree height
For a BST with n nodes

- Want height to be $\sim \log n$
- "Balanced"

But balancing cost must be low

## How about complete trees?

This worked for heaps

- balance maintained via percolate up/down
- Let's try with BST

(add 14 in rightmost leaf, percolate up)


## Balancing Trees

- Many algorithms exist for keeping trees balanced
- Adelson-Velskii and Landis (AVL) trees
- Splay trees and other self-adjusting trees
- B-trees and other multiway search trees (for very large trees)
- Today we will talk about AVL trees...


## The AVL Tree Data Structure

Ordering property

- Same as for BST

Structural properties

1. Binary tree property ( 0,1 , or 2 children)
2. Heights of left and right subtrees of every node differ by at most 1

evers subtre is an AGL tree
Result: worst case height: $\mathrm{O}(\log n)$

## Recursive Height Calculation

Recall: height is max number of edges from root to a leaf

What is the height at A?
$\max \left(h_{\text {leff }}, h_{\text {rghat }}\right)+1$


Define: height(null) $=-1$


AVL trees or not?


## Goal

## $h \in \mathbf{O}(\log n)$

- we will do this by showing: $n+1>\phi^{h} \Rightarrow \log _{\phi}(n+1)>\log _{\phi} \phi^{h}=h$
-What's $\phi$ ?
$\phi$ is the golden ratio, $(1+\sqrt{ } 5) / 2$

-Since the Renaissance, many artists and architects have proportioned their work (e.g., length:height) to approximate the golden ratio $\phi$



## Minimum Size of an AVL Tree

- $\mathrm{n}>\mathrm{m}(\mathrm{h})=$ minimum \# of nodes in an AVL tree of height $h$.
- Base cases: 0
$-m(0)=1 \quad m(1)=2^{0} m(2)=400$
- Inductive case:

$$
-m(h)=1+m(h-2)+m(h-1)
$$



- Can prove:

$$
-m(h)>\phi^{h}-1
$$



## Proof that $m(h)>\phi^{h}-1$

- Base cases $h=0,1$ :

$$
m(0)=1>\phi^{0}-1=0 \sqrt{ } \quad m(1)=2>\phi^{1}-1 \approx 0.62
$$

- Assume true for $h-2$ and $h-1$ :

$$
m(h-2)>\phi^{h-2}-1 \quad m(h-1)>\phi^{h-1}-1
$$

- Induction step:

$$
\begin{aligned}
& m(h)=m(h-1)+m(h-2)+1>\left(\phi^{h-1}-1\right)+\left(\phi^{h-2}-1\right)+1 \\
& \begin{aligned}
\left(\phi^{h-1}-1\right)+\left(\phi^{h-2}-1\right)+1 & =\phi^{h-2}(\phi+1)-1 \\
& =\phi^{h-2}\left(\phi^{2}\right)-1 \\
& =\phi^{h}-1
\end{aligned} \\
& \rightarrow m(h)>\phi^{h}-1
\end{aligned}
$$

## Maximum Height of an AVL Tree

Suppose we have $n$ nodes in an AVL tree of height $h$.
We can now say:

$$
n \geq m(h)>\phi^{h}-1
$$

What does this say about $n$ ?

$$
n>\phi^{n}-1
$$

What does this say about the complexity of $h$ ?

$$
\begin{aligned}
& n \in O(\log n)-\text { slid en } \\
& n \leq 2^{h+1}-1(\text { perfect tree }) \\
& \left.\Rightarrow 2^{h+1} \geq n+1 \Rightarrow \log _{2} 2^{n+1} \geq \log _{2}(n+1) \quad h \in\right][(\log n) \\
& n+1 \geq \log _{2}(n+1)
\end{aligned}
$$

## Testing the Balance Property



We need to be able to:

1. Track Balance
2. Detect Imbalance
3. Restore Balance

Is this AVL tree balanced?
How about after insert(30)?

## An AVL Tree



## AVL trees: find, insert

- AVL find:
- same as BST find.
- AVL insert:
- same as BST insert, except may need to "fix" the AVL tree after inserting new value.

We will consider the 4 fundamental insertion cases...

## Case \#1: left-left insertion (zig)



Insert on left child's left


## Case \#1: repair with single rotation


single rotation
X $<$ b $<$ Y $<$ a $<$ Z


Height of tree before/after? Effect on Ancestors? Cost?

Single rotation example



## Case \#2: left-right insertion



Insert on left child's right


## Case \#2: repair with single rotation?



X $<$ b $<$ Y $<$ a $<$ Z
Single rotation


## Case \#2: trying again

Let's break subtree Y into pieces:


Insert on left child's right (at U or V )


## Case \#2: trying again

Let's break subtree Y into pieces:


## Can also do this in two rotations



First rotation
X $<\mathbf{b}<\mathbf{U}<\mathbf{c}<\mathbf{V}<\mathbf{a}<\mathbf{Z}$


## second rotation



Double rotation example




Double rotation, step 1



Double rotation, step 2


## Case \#3: right-left insertion



## Double rotation



## Case \#4: right-right insertion



## AVL tree case summary

Let $a$ be the node where an imbalance occurs.
Four cases to consider. The insertion below $a$ is in the

1. left child's left subtree. (zig)
2. left child's right subtree. (zig-zag)
3. right child's left subtree. (zig-zag)
4. right child's right subtree. (zig)

Cases $1 \& 4$ are solved by a single rotation:

1. Rotate between $a$ and child

Cases 2 \& 3 are solved by a double rotation:

1. Rotate between $a$ 's child and grandchild
2. Rotate between $a$ and $a$ 's new child

## Single and Double Rotations:

Consider inserting one of $\{1,4,6,8,10,12,14\}$ Which values require:

1. single rotation?
2. double rotation?

3. no rotation?

## Insertion procedure

1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:
cases \#1,\#4: Perform single rotation and exit
cases \#2,\#3: Perform double rotation and exit

Both rotations restore subtree height to value before insert. Hence only type of rotation is sufficient per insert!

## More insert examples

Insert(33)


Unbalanced?
How to fix?

## Single Rotation



## More insert examples



How to fix?

## Single Rotation (oops!)



## Double Rotation



## More insert examples

Insert(3)

Unbalanced?


How to fix?

Insert into an AVL tree: 5, 8, 9, 4, 2, 7, 3, 1

## AVL complexity

What is the worst case complexity of a find?

What is the worst case complexity of an insert?

What is the worst case complexity of buildTree?

