
1/17/2014

1

1

CSE 332: Data Structures

Binary Search Trees

Richard Anderson, Steve Seitz

Winter 2014

2

Announcements

• HW #2 due next Wednesday

• Project 2 out today

– can work with partners (optional). Must sign up

– harder than project 1 (16 files to implement)

– start early!

• Read Chapter 4.1-4.3, 4.6

• No class on Monday

3

ADTs Seen So Far

• Stack

– Push

– Pop

• Queue

– Enqueue

– Dequeue

None of these support “find”

• Priority Queue

– Insert

– DeleteMin

4

The Dictionary ADT

• Data:

– a set of

(key, value) pairs

• Operations:

– Insert (key, value)

– Find (key)

– Remove (key)

The Dictionary ADT is also

 called the “Map ADT”

• seitz

Steve

Seitz

CSE 592

• anderson

Richard

Anderson

CSE 582

• kainby87

HyeIn

Kim

CSE 220

• …

insert(seitz, ….)

find(anderson)
• anderson
Richard, Anderson,…

5

Many Uses

• Networks: router tables

• Operating systems: page tables

• Compilers: symbol tables

• Search: phone directories, ...

• Biology: genome maps

• Vision: object recognition

• ...

Probably the most widely used ADT!

6

Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert delete find

1/17/2014

2

7

Binary Trees

• Binary tree is
– a root

– left subtree (maybe empty)

– right subtree (maybe empty)

• Representation:

A

B

D E

C

F

H G

J I

Data

right

pointer

left

pointer

8

Binary Tree: Representation

A
right

pointer

left

pointer A

B

D E

C

F

B
right

pointer

left

pointer

C
right

pointer

left

pointer

D
right

pointer

left

pointer

E
right

pointer

left

pointer

F
right

pointer

left

pointer

9

Tree Traversals

A traversal is an order for

visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

10

Inorder Traversal

void traverse(BNode t){

 if (t != NULL)

 traverse (t.left);

 process t.element;

 traverse (t.right);

 }

}

11

Binary Tree: Special Cases

A

B

D E

C

G F

I H

A

B

D E

C

F

Full Tree

Complete Tree

A

B

D E

C

G F

Perfect Tree

A

B

C

“List” Tree

12

Binary Tree: Some Numbers…

Recall: height of a tree = longest path from root to leaf.

For binary tree of height h:

– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

1/17/2014

3

13

Binary Search Tree Data Structure

4

12 10 6 2

11 5

8

14

13

7 9

• Structural property

– each node has  2 children

• Order property

– all keys in left subtree smaller

than root’s key

– all keys in right subtree larger

 than root’s key

14

Example and Counter-Example

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21 BINARY SEARCH TREES?

7

15

15

Find in BST, Recursive

Node Find(Object key,

 Node root) {

 if (root == NULL)

 return NULL;

 if (key < root.key)

 return Find(key,

 root.left);

 else if (key > root.key)

 return Find(key,

 root.right);

 else

 return root;

}

20 9 2

15 5

12

30 7 17

Runtime:

10

16

Find in BST, Iterative

Node Find(Object key,

 Node root) {

 while (root != NULL &&

 root.key != key) {

 if (key < root.key)

 root = root.left;

 else

 root = root.right;

 }

 return root;

}

20 9 2

15 5

12

30 7 17

Runtime:

10

17

Bonus: FindMin/FindMax

• Find minimum

• Find maximum

20 9 2

15 5

12

30 7 17 10

18

Insert in BST

20 9 2

15 5

12

30 7 17

Runtime:

Insert(13)

Insert(8)

Insert(31)

Insertions happen only

at the leaves – easy!

10

1/17/2014

4

19

If inserted in given order,

what is the tree? What

big-O runtime for this kind

of sorted input?

If inserted in reverse

order, what is the tree?

What big-O runtime for

this kind of sorted input?

BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted

into an initially empty BST.

20

BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted

into an initially empty BST.

– If inserted median first, then left median, right median,

etc., what is the tree? What is the big-O runtime for

this kind of sorted input?

21

Deletion in BST

20 9 2

15 5

12

30 7 17

Why might deletion be harder than insertion?

10

22

Deletion

• Removing an item disrupts the tree structure.

• Basic idea: find the node that is to be

removed. Then “fix” the tree so that it is still a

binary search tree.

• Three cases:

– node has no children (leaf node)

– node has one child

– node has two children

23

Deletion – The Leaf Case

20 9 2

15 5

12

30 7 17

Delete(17)

10

24

Deletion – The One Child Case

20 9 2

15 5

12

30 7

Delete(15)

10

1/17/2014

5

25

Deletion – The Two Child Case

30 9 2

20 5

12

7

Delete(5)

What can we replace 5 with?

10

26

Deletion – The Two Child Case

Idea: Replace the deleted node with a value

between the two child subtrees

Options:

• succ from right subtree: findMin(t.right)

• pred from left subtree: findMax(t.left)

Now delete the original node containing succ or pred

• Leaf or one child case – easy!

27

Finally…

30 9 2

20 7

12

7 replaces 5

Original node containing

7 gets deleted

10

28

Balanced BST

Observations

• BST: the shallower the better!

• For a BST with n nodes

– Average depth (averaged over all possible

insertion orderings) is O(log n)

– Worst case maximum depth is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)

lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is O(log n) – strong enough!

2. is easy to maintain – not too strong!

