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CSE 332: Data Structures 

Binary Search Trees 

Richard Anderson, Steve Seitz 

Winter 2014 
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Announcements 

 

• HW #2 due next Wednesday 

• Project 2 out today 

– can work with partners (optional).  Must sign up 

– harder than project 1 (16 files to implement) 

– start early! 

• Read Chapter 4.1-4.3, 4.6 

• No class on Monday 
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ADTs Seen So Far 

• Stack 

– Push 

– Pop 

 

• Queue 

– Enqueue 

– Dequeue 

None of these support “find” 

• Priority Queue 

– Insert 

– DeleteMin 
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The Dictionary ADT 

• Data: 

– a set of 

(key, value) pairs 

 

• Operations: 

– Insert (key, value) 

– Find (key) 

– Remove (key) 

The Dictionary ADT is also 

 called the “Map ADT” 

• seitz 

Steve 

Seitz 

CSE 592 

 

• anderson 

Richard 

Anderson 

CSE 582 

 

• kainby87 

HyeIn 

Kim 

CSE 220 

• … 

insert(seitz, ….) 

find(anderson) 
• anderson 
Richard, Anderson,… 
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Many Uses 

 

• Networks:    router tables 

• Operating systems: page tables 

• Compilers:  symbol tables 

• Search:   phone directories, ... 

• Biology:   genome maps 

• Vision:   object recognition 

• ... 

Probably the most widely used ADT! 
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Implementations 

• Unsorted Linked-list 

 

 

• Unsorted array 

 

 

• Sorted array 

                                

insert delete find 
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Binary Trees 

• Binary tree is 
– a root 

– left subtree (maybe empty)  

– right subtree (maybe empty)  

 

• Representation: 

A 

B 

D E 

C 

F 

H G 

J I 

Data 

right  

pointer 

left 

pointer 
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Binary Tree: Representation 
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Tree Traversals 

A traversal is an order for  

visiting all the nodes of a tree 

 

Three types: 
• Pre-order: Root, left subtree, right subtree 

 

• In-order: Left subtree, root, right subtree 

 

• Post-order: Left subtree, right subtree, root 

+ 

* 

2 4 

5 

(an expression tree) 
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Inorder Traversal 
 

void traverse(BNode t){ 

  if (t != NULL) 

    traverse (t.left); 

  process t.element; 

   traverse (t.right); 

  } 

} 
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Binary Tree: Special Cases 

A 

B 

D E 

C 

G F 

I H 

A 

B 

D E 

C 

F 

Full Tree 

Complete Tree 

A 

B 

D E 

C 

G F 

Perfect Tree 

A 

B 

C 

“List” Tree 
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Binary Tree: Some Numbers… 

Recall:  height of a tree = longest path from root to leaf. 

 

For binary tree of height h: 

– max # of leaves:  
 

– max # of nodes: 
 

– min # of leaves: 
 

– min # of nodes: 
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Binary Search Tree Data Structure 

4 

12 10 6 2 

11 5 

8 

14 

13 

7 9 

• Structural property 

– each node has  2 children 

 

• Order property 

– all keys in left subtree smaller 

than root’s key 

– all keys in right subtree larger 

 than root’s key 
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Example and Counter-Example 
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11 7 1 

8 4 

5 

4 

18 10 6 2 

11 5 

8 

20 

21 BINARY SEARCH TREES? 
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Find in BST, Recursive 

Node Find(Object key, 

            Node root) { 

  if (root == NULL) 

    return NULL; 

 

  if (key < root.key) 

    return Find(key, 

                root.left); 

  else if (key > root.key) 

    return Find(key, 

                root.right); 

  else 

    return root; 

} 

20 9 2 

15 5 

12 

30 7 17 

Runtime: 

10 
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Find in BST, Iterative 

Node Find(Object key, 

            Node root) { 

 

  while (root != NULL && 

         root.key != key) { 

    if (key < root.key) 

      root = root.left; 

    else  

      root = root.right; 

  } 

 

  return root; 

} 

20 9 2 

15 5 

12 

30 7 17 

Runtime: 

10 
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Bonus: FindMin/FindMax 

 

• Find minimum 

 

 

 

• Find maximum 

20 9 2 

15 5 

12 

30 7 17 10 
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Insert in BST 

20 9 2 

15 5 

12 

30 7 17 

Runtime: 

Insert(13) 

Insert(8) 

Insert(31) 

Insertions happen only  

at the leaves – easy! 

10 
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If inserted in given order, 

what is the tree?  What 

big-O runtime for this kind 

of sorted input? 

 

 

 

If inserted in reverse 

order, what is the tree?  

What big-O runtime for 

this kind of sorted input? 

 

BuildTree for BST 

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted 

into an initially empty BST.  
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BuildTree for BST 

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted 

into an initially empty BST.  

   

– If inserted median first, then left median, right median, 

etc., what is the tree?  What is the big-O runtime for 

this kind of sorted input? 
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Deletion in BST 

20 9 2 

15 5 

12 

30 7 17 

Why might deletion be harder than insertion? 

10 
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Deletion 

• Removing an item disrupts the tree structure. 

• Basic idea: find the node that is to be 

removed.  Then “fix” the tree so that it is still a 

binary search tree. 

• Three cases: 

– node has no children (leaf node) 

– node has one child 

– node has two children 
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Deletion – The Leaf Case 

20 9 2 

15 5 

12 

30 7 17 

Delete(17) 

10 

24 

Deletion – The One Child Case 

20 9 2 

15 5 

12 

30 7 

Delete(15) 

10 
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Deletion – The Two Child Case 

30 9 2 

20 5 

12 

7 

Delete(5) 

What can we replace 5 with? 
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Deletion – The Two Child Case 

Idea: Replace the deleted node with a value 

between the two child subtrees 

 

Options: 

• succ from right subtree:  findMin(t.right) 

• pred from left subtree:  findMax(t.left) 

 

Now delete the original node containing succ or pred 

• Leaf or one child case – easy! 
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Finally…  

30 9 2 

20 7 

12 

7 replaces 5 

Original node containing 

7 gets deleted 

10 
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Balanced BST 

Observations 

• BST: the shallower the better! 

• For a BST with n nodes 

– Average depth (averaged over all possible 

insertion orderings) is O(log n) 

– Worst case maximum depth is O(n) 

• Simple cases such as insert(1, 2, 3, ..., n) 

lead to the worst case scenario 

 

Solution: Require a Balance Condition that 

1. ensures depth is O(log n)   – strong enough! 

2. is easy to maintain              – not too strong! 


