ADTs Seen So Far

- **Stack**
 - Push
 - Pop
- **Queue**
 - Enqueue
 - Dequeue

None of these support "find"

Priority Queue

- Insert
- DeleteMin

The Dictionary ADT

- **Data:** a set of (key, value) pairs
- **Operations:**
 - Insert (key, value)
 - Find (key)
 - Remove (key)

The Dictionary ADT is also called the "Map ADT"

Many Uses

- Networks: router tables
- Operating systems: page tables
- Compilers: symbol tables
- Search: phone directories, ...
- Biology: genome maps
- Vision: object recognition
- ...

Probably the most widely used ADT!

Implementations

- Unsorted Linked-list
- Unsorted array
- Sorted array
Binary Trees

- Binary tree is
 - a root
 - left subtree (maybe empty)
 - right subtree (maybe empty)

- Representation:

Tree Traversals

- A traversal is an order for visiting all the nodes of a tree

Three types:
- Pre-order: Root, left subtree, right subtree
- In-order: Left subtree, root, right subtree
- Post-order: Left subtree, right subtree, root

Inorder Traversal

```c
void traverse(BNode t){
  if (t != NULL)
    traverse (t.left);
    process t.element;
    traverse (t.right);
}
```

Binary Tree: Special Cases

- Full Tree
- Complete Tree
- Perfect Tree
- "List" Tree

Binary Tree: Some Numbers...

Recall: height of a tree = longest path from root to leaf.

For binary tree of height \(h \):
- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:
Binary Search Tree Data Structure

- Structural property
 - each node has ≤ 2 children

- Order property
 - all keys in left subtree smaller than root's key
 - all keys in right subtree larger than root's key

Example and Counter-Example

Find in BST, Recursive

```java
Node Find(Object key, Node root) {
    if (root == NULL)
        return NULL;
    if (key < root.key)
        return Find(key, root.left);
    else if (key > root.key)
        return Find(key, root.right);
    else
        return root;
}
```

Find in BST, Iterative

```java
Node Find(Object key, Node root) {
    while (root != NULL && root.key != key) {
        if (key < root.key)
            root = root.left;
        else
            root = root.right;
    }
    return root;
}
```

Bonus: FindMin/FindMax

- Find minimum
- Find maximum

Insert in BST

- Insert(13)
- Insert(8)
- Insert(31)

Insertions happen only at the leaves – easy!
BuildTree for BST

- Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

 If inserted in given order, what is the tree? What big-O runtime for this kind of sorted input?

 If inserted in reverse order, what is the tree? What big-O runtime for this kind of sorted input?

Deletion in BST

- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed. Then "fix" the tree so that it is still a binary search tree.
- Three cases:
 - node has no children (leaf node)
 - node has one child
 - node has two children

Deletion – The Leaf Case

Delete(17)

Deletion – The One Child Case

Delete(15)
Deletion – The Two Child Case

Idea: Replace the deleted node with a value *between* the two child subtrees

Options:
- `succ` from right subtree: \(\text{findMin}(t_{\text{right}})\)
- `pred` from left subtree: \(\text{findMax}(t_{\text{left}})\)

Now delete the original node containing `succ` or `pred`
- Leaf or one child case – easy!

Finally…

<table>
<thead>
<tr>
<th>7 replaces 5</th>
</tr>
</thead>
</table>

Original node containing 7 gets deleted

Balanced BST

Observations
- BST: the shallower the better!
- For a BST with \(n\) nodes
 - Average depth (averaged over all possible insertion orderings) is \(O(\log n)\)
 - Worst case maximum depth is \(O(n)\)
- Simple cases such as `insert(1, 2, 3, ..., n)` lead to the worst case scenario

Solution: Require a *Balance Condition* that
1. ensures depth is \(O(\log n)\) – strong enough!
2. is easy to maintain – not too strong!