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Announcements

• HW #2 due next Wednesday

• Project 2 out today

– can work with partners (optional).  Must sign up

– harder than project 1 (16 files to implement)

– start early!

• Read Chapter 4.1-4.3, 4.6

• No class on Monday
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ADTs Seen So Far

• Stack

– Push

– Pop

• Queue

– Enqueue

– Dequeue

None of these support “find”

• Priority Queue

– Insert

– DeleteMin
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The Dictionary ADT

• Data:

– a set of

(key, value) pairs

• Operations:

– Insert (key, value)

– Find (key)

– Remove (key)

The Dictionary ADT is also

called the “Map ADT”
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Many Uses

• Networks:  router tables

• Operating systems: page tables

• Compilers: symbol tables

• Search: phone directories, ...

• Biology: genome maps

• Vision: object recognition

• ...

Probably the most widely used ADT!
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Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert deletefind



7

Binary Trees

• Binary tree is
– a root

– left subtree (maybe empty) 

– right subtree (maybe empty) 

• Representation:
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Binary Tree: Representation
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Tree Traversals

A traversal is an order for 

visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root
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Inorder Traversal

void traverse(BNode t){

if (t != NULL)

traverse (t.left);

process t.element;

traverse (t.right);

}

}
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Binary Tree: Special Cases
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Binary Tree: Some Numbers…

Recall:  height of a tree = longest path from root to leaf.

For binary tree of height h:

– max # of leaves: 

– max # of nodes:

– min # of leaves:

– min # of nodes:
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Binary Search Tree Data Structure
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• Structural property

– each node has ≤ 2 children

• Order property

– all keys in left subtree smaller
than root’s key

– all keys in right subtree larger
than root’s key
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Example and Counter-Example
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Find in BST, Recursive

Node Find(Object key,

Node root) {

if (root == NULL)

return NULL;

if (key < root.key)

return Find(key,

root.left);

else if (key > root.key)

return Find(key,

root.right);

else

return root;

}
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Find in BST, Iterative

Node Find(Object key,

Node root) {

while (root != NULL &&

root.key != key) {

if (key < root.key)

root = root.left;

else 

root = root.right;

}

return root;

}
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Runtime:
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Bonus: FindMin/FindMax

• Find minimum

• Find maximum
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Insert in BST
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Runtime:

Insert(13)

Insert(8)

Insert(31)

Insertions happen only 

at the leaves – easy!
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If inserted in given order, 

what is the tree?  What 

big-O runtime for this kind 

of sorted input?

If inserted in reverse 

order, what is the tree?  

What big-O runtime for 

this kind of sorted input?

BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted 

into an initially empty BST. 
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BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted 

into an initially empty BST. 

– If inserted median first, then left median, right median, 

etc., what is the tree?  What is the big-O runtime for 

this kind of sorted input?
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Deletion in BST
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Why might deletion be harder than insertion?
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Deletion

• Removing an item disrupts the tree structure.

• Basic idea: find the node that is to be 

removed.  Then “fix” the tree so that it is still a 

binary search tree.

• Three cases:

– node has no children (leaf node)

– node has one child

– node has two children
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Deletion – The Leaf Case
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Deletion – The One Child Case
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Deletion – The Two Child Case
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What can we replace 5 with?
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Deletion – The Two Child Case

Idea: Replace the deleted node with a value 

between the two child subtrees

Options:

• succ from right subtree: findMin(t.right)

• pred from left subtree: findMax(t.left)

Now delete the original node containing succ or pred

• Leaf or one child case – easy!
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Finally… 
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Original node containing
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Balanced BST

Observations

• BST: the shallower the better!

• For a BST with n nodes

– Average depth (averaged over all possible 

insertion orderings) is O(log n)

– Worst case maximum depth is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)

lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is O(log n)  – strong enough!

2. is easy to maintain             – not too strong!


