CSE 332: Data Structures
Binary Search Trees

Richard Anderson, Steve Seitz
Winter 2014
Announcements

• HW #2 due next Wednesday
• Project 2 out today
 – can work with partners (optional). Must sign up
 – **harder** than project 1 (16 files to implement)
 – start early!
• Read Chapter 4.1-4.3, 4.6
• No class on Monday
ADTs Seen So Far

- **Stack**
 - Push
 - Pop

- **Queue**
 - Enqueue
 - Dequeue

- **Priority Queue**
 - Insert
 - DeleteMin

None of these support “find”
The Dictionary ADT

• Data:
 – a set of (key, value) pairs

• Operations:
 – Insert (key, value)
 – Find (key)
 – Remove (key)

The Dictionary ADT is also called the "Map ADT"
Many Uses

• Networks: router tables
• Operating systems: page tables
• Compilers: symbol tables
• Search: phone directories, ...
• Biology: genome maps
• Vision: object recognition
• ...

Probably the most widely used ADT!
Implementations

- Unsorted Linked-list
 - \(O(1) \) for insert
 - \(O(n) \) for find
 - \(O(n) \) for delete

- Unsorted array
 - \(O(1) \) for insert
 - \(O(n) \) for find and delete

- Sorted array
 - \(O(n) \) for insert
 - \(O(\log n) \) for find
 - \(O(n) \) to shift

\(= O(n) \)
Binary Trees

• Binary tree is
 – a root
 – left subtree (*maybe empty*)
 – right subtree (*maybe empty*)

• Representation:

```
data
+------------------+
| left | right |
+------------------+
```

```
A
/|
B C
/|
D E F
/|
G  H I J
```


Binary Tree: Representation

```
A
  left pointer  right pointer

B
  left pointer  right pointer
  D
  left pointer  right pointer
  E
  left pointer  right pointer

C
  left pointer  right pointer
  F
  left pointer  right pointer

A
  B
    D
    E
    F

C
```

8
Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

Three types:
- **Pre-order**: Root, left subtree, right subtree

 \[
 + \ast 2 4 5
 \]
- **In-order**: Left subtree, root, right subtree

 \[
 2 \ast 4 + 5
 \]
- **Post-order**: Left subtree, right subtree, root

 \[
 24 \ast 5 +
 \]
Inorder Traversal

```c
void traverse(BNode t){
    if (t != NULL)
        traverse (t.left);
    process t.element;
    traverse (t.right);
}
```
Binary Tree: Special Cases

- **Complete Tree**: Every level of the tree is fully filled.
- **Perfect Tree**: Every level is fully filled and all leaves are at the same depth.
- **Full Tree**: Every node has 0 or 2 children.
- **“List” Tree**: Only one node exists at each level of the tree.
Binary Tree: Some Numbers...

Recall: height of a tree = longest path from root to leaf.

For binary tree of height h:
- max # of leaves: 2^h
- max # of nodes: $2^{h+1} - 1$
- min # of leaves: 1
- min # of nodes: $h+1$
Binary Search Tree Data Structure

- **Structural property**
 - each node has ≤ 2 children

- **Order property**
 - all keys in left subtree smaller than root’s key
 - all keys in right subtree larger than root’s key
Example and Counter-Example

BINARY SEARCH TREES?
Find in BST, Recursive

Node Find(Object key, Node root) {
 if (root == NULL) {
 return NULL;
 }
 if (key < root.key) {
 return Find(key, root.left);
 } else if (key > root.key) {
 return Find(key, root.right);
 } else {
 return root;
 }
}
Find in BST, Iterative

Node Find(Object key,
 Node root) {

 while (root != NULL &&
 root.key != key) {
 if (key < root.key)
 root = root.left;
 else
 root = root.right;
 }

 return root;
}
Bonus: FindMin/FindMax

- Find minimum
- Find maximum
Insert in BST

Insertions happen only at the leaves – easy!

Runtime:

$O(n)$
BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

 If inserted in given order, what is the tree? What big-O runtime for this kind of sorted input?

 If inserted in reverse order, what is the tree? What big-O runtime for this kind of sorted input?
BuildTree for BST

- Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.
 - If inserted median first, then left median, right median, etc., what is the tree? What is the big-O runtime for this kind of sorted input?
Deletion in BST

Why might deletion be harder than insertion?
Deletion

• Removing an item disrupts the tree structure.
• Basic idea: find the node that is to be removed. Then “fix” the tree so that it is still a binary search tree.
• Three cases:
 – node has no children (leaf node)
 – node has one child
 – node has two children
Deletion – The Leaf Case

Delete(17)
Deletion – The One Child Case

Delete(15)
Deletion – The Two Child Case

Delete(5)

What can we replace 5 with?
Deletion – The Two Child Case

Idea: Replace the deleted node with a value *between* the two child subtrees

Options:

- *succ* from right subtree: findMin(t.right)
- *pred* from left subtree: findMax(t.left)

Now delete the original node containing *succ* or *pred*

- Leaf or one child case – easy!
Finally…

7 replaces 5

Original node containing 7 gets deleted
Balanced BST

Observations

• BST: the shallower the better!
• For a BST with \(n \) nodes
 – Average depth (averaged over all possible insertion orderings) is \(O(\log n) \)
 – Worst case maximum depth is \(O(n) \)
• Simple cases such as insert(1, 2, 3, ..., \(n \)) lead to the worst case scenario

Solution: Require a **Balance Condition** that

1. ensures depth is \(O(\log n) \) – strong enough!
2. is easy to maintain – not too strong!