CSE 332: Data Structures

Asymptotic Analysis

Richard Anderson, Steve Seitz
Winter 2014

Key ideas

- Express runtime as a function of input size
- E.g., $T(n)$ is the maximum runtime of the algorithm for inputs of size n
- Constant factors don't matter in runtime analysis
- Constants depend on machine model
- Very tedious to determine
- Import case is for large n
- We study how runtime increases for large inputs

Definition of Order Notation

Asymptotic Lower Bounds

- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
- $h(n) \in \Omega(g(n))$ iff

$$
n^{2} \in S(n \log n)
$$

There exist $c>0$ and $n_{0}>0$ such that $h(n) \geq c$ $g(n)$ for all $n \geq n_{0}$

Asymptotic Tight Bound

- $\theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$

$$
\begin{aligned}
& \text { - } h(n) \in \theta(f(n)) \text { eff } \\
& h(n) \in O(f(n)) \text { and } h(n) \in \Omega(f(f)) \\
& \text { This is equivalent to: } \\
& \lim _{n \rightarrow \infty} h(n) / f(n)=c \neq 0 \\
& h(n)=5 \log n+3 \in \theta(\log n)
\end{aligned}
$$

Example

- $F(n)=4 n^{2}+n \log n$
- $F(n)$ is $O\left(n^{3}\right)$? Yes
- $F(n)$ is $\Omega\left(n^{3}\right)$? No
- $F(n)$ is $\Omega\left(n^{2}\right)$? Yes
- $F(n)$ is $\theta\left(n^{2}\right)$? Yes
- $F(n)$ is $\theta\left(n^{3}\right)$? No

Full Set of Asymptotic Bounds

- $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
$-o(f(n))$ is the set of all functions asymptotically strictly less than $f(n)$
- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
- $\omega(g(n))$ is the set of all functions asymptotically strictly greater than $g(n)$
- $\theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$

Formal Definitions

- $h(n) \in O(f(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \leq c f(n)$ for all $n \geq n_{0}$

- $h(n) \in o(f(n))$ iff

There exists an $n_{0}>0$ such that $h(n)<c f(n)$ for all $c>0$ and $n \geq n_{0}$

- This is equivalent to: $\lim _{n \rightarrow \infty} h(n) / f(n)=0$
- $h(n) \in \Omega(g(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \geq c g(n)$ for all $n \geq n_{0}$

- $h(n) \in \omega(g(n))$ iff

There exists an $n_{0}>0$ such that $h(n)>c g(n)$ for all $c>0$ and $n \geq n_{0}$

- This is equivalent to: $\lim _{n \rightarrow \infty} h(n) / g(n)=\infty$
- $h(n) \in \theta(f(n))$ iff
$h(n) \in O(f(n))$ and $h(n) \in \Omega(f(n))$
- This is equivalent to: $\lim _{n \rightarrow \infty} h(n) / f(n)=c \neq 0$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
O	\leq
Ω	\geq
θ	$=$
0	$<$
ω	$>$

Complexity cases (revisited)

Problem size \mathbf{N}

- Worst-case complexity: max \# steps algorithm takes on "most challenging" input of size \mathbf{N}
- Best-case complexity: min \# steps algorithm takes on "easiest" input of size \mathbf{N}
- Average-case complexity: avg \# steps algorithm takes on random inputs of size \mathbf{N}
- Amortized complexity: max total \# steps algorithm takes on M "most challenging" consecutive inputs of size \mathbf{N}, divided by \mathbf{M} (i.e., divide the max total by M).

