
1

CSE 332: Data Structures

Priority Queues – Binary Heaps

Richard Anderson, Steve Seitz

Winter 2014

2

Administrative

• P1A due tonight (Monday) by 11:59pm

– via catalyst

• HW1 due beginning of class Wednesday

• Reading for this week: Chapter 6.1-6.5

3

Recall Queues

• FIFO: First-In, First-Out

– Print jobs

– File serving

– Phone calls and operators

– Lines at the Department of Licensing…

4

Priority Queues

Prioritize who goes first – a priority queue:

– treat ER patients in order of severity

– route network packets in order of urgency

– operating system can favor jobs of shorter

duration or those tagged as having higher

importance

– Greedy optimization: “best first” problem solving

5

Priority Queue ADT

• Need a new ADT

• Operations: Insert an Item,
Remove the “Best” Item

insert deleteMin

6 2

15 23

12 18

45 3

7

61/13/2014 6

Priority Queue ADT

1. PQueue data : collection of data with priority

2. PQueue operations

– insert

– deleteMin

(also: create, destroy, is_empty)

3. PQueue property: if x has lower priority

than y, x will be deleted before y

77

Potential implementations

insert deleteMin

Unsorted list (Array)

Unsorted list (Linked-List)

Sorted list (Array)

Sorted list (Linked-List)

Binary Search Tree (BST)

8

Binary Heap data structure

• binary heap (a kind of binary tree) for priority

queues:

– O(log n) worst case for both insert and deleteMin

– O(1) average insert

• It’s optimized for priority queues. Lousy for other

types of operations (e.g., searching, sorting)

9

Tree Review
A

E

B

D F

C

G

IH

LJ MK N

root(T): A

leaves(T): D-F, I-N

children(B): D-F

parent(H): G

siblings(E): D,F

ancestors(F):

descendents(G):

subtree(C):

Tree T

10

More Tree Terminology

A

E

B

D F

C

G

IH

LJ MK N

depth(B):

height(G):

height(T):

degree(B):

branching

factor(T):

n-ary tree:

Tree T

11

Binary Heap Properties

A binary heap is a binary tree with two

important properties that make it a good choice

for priority queues:

1. Completeness

2. Heap Order

Note: we will sometimes refer to a binary heap

as simply a “heap”.

12

Completeness Property
• A binary heap is a complete binary tree:

– a binary tree with all levels full, except possibly the bottom
level, which is filled left to right

Examples:

Height of a complete binary tree

with n nodes?

13

Heap Order Property

Heap order property: For every non-root

node X, the value in the parent of X is less

than (or equal to) the value in X.

1530

8020

10

996040

8020

10

50 700

85

which of these is a heap?

14

Heap Operations

• Main ops: insert, deleteMin

• Key is to maintain

– Completeness

– Heap Order

• Basic idea is to propagate changes
up/down the tree, fixing order as we go

15

Heap – insert(val)

Basic Idea:

1. Put val at last leaf position

2. Percolate up by repeatedly exchanging

node with parent as long as needed

16

Insert: percolate up

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60

17

Heap – deleteMin

Basic Idea:

1. Remove min element

2. Put “last” leaf node value at root

3. Find smallest child of node

4. Swap node with its smallest child if needed.

5. Repeat steps 3 & 4 until no swaps needed.

18

DeleteMin: percolate down

996040

1520

10

50 700

85

65

19

DeleteMin: percolate down

996040

6520

15

50 700

85

20

Representing Complete

Binary Trees in an Array

GED

CB

A

J KH I

F

L

From node i:

left child:

right child:

parent:

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

21

Why use an array?

22

DeleteMin Code

Object deleteMin() {

assert(!isEmpty());

returnVal = Heap[1];

size--;

newPos =

percolateDown(1,

Heap[size + 1]);

Heap[newPos] =

Heap[size + 1];

return returnVal;

}

int percolateDown(int hole,

Object val) {

while (2*hole <= size) {

left = 2*hole;

right = left + 1;

if (right ≤ size &&

Heap[right] < Heap[left])

target = right;

else

target = left;

if (Heap[target] < val) {

Heap[hole] = Heap[target];

hole = target;

}

else

break;

}

return hole;

}

runtime:

(Java code in book)

23

Insert Code

void insert(Object o) {

assert(!isFull());

size++;

newPos =

percolateUp(size,o);

Heap[newPos] = o;

}

int percolateUp(int hole,

Object val) {

while (hole > 1 &&

val < Heap[hole/2])

Heap[hole] = Heap[hole/2];

hole /= 2;

}

return hole;

}

runtime:

(Java code in book)

24

0 1 2 3 4 5 6 7 8

Insert: 16, 32, 4, 69, 105, 43, 2

25

More Priority Queue Operations

decreaseKey(nodePtr, amount):
given a pointer to a node in the queue, reduce its priority

Binary heap: change priority of node and ________________

increaseKey(nodePtr, amount):
given a pointer to a node in the queue, increase its priority

Binary heap: change priority of node and ________________

Why do we need a pointer? Why not simply data value?

Worst case running times?

26

More Priority Queue Operations

remove(objPtr):
given a pointer to an object in the queue, remove it

Binary heap: ______________________________________

findMax():
Find the object with the highest value in the queue

Binary heap: ______________________________________

Worst case running times?

27

More Binary Heap Operations

expandHeap():
If heap has used up array, copy to new, larger array.

• Running time:

buildHeap(objList):
Given list of objects with priorities, fill the heap.

• Running time:

We do better with buildHeap...

28

Building a Heap: Take 1

5 11 3 10 6 9 4 8 1 7 212

29

BuildHeap: Floyd’s Method

Add elements arbitrarily to form a complete tree.

Pretend it’s a heap and fix the heap-order property!

27184

96103

115

12
Red nodes need
to percolate
down

Key idea: fix red
nodes from
bottom-up

5 11 3 10 6 9 4 8 1 7 212

30

BuildHeap: Floyd’s Method

67184

92103

115

12

671084

9213

115

12

1171084

9613

25

12

1171084

9653

21

12

31

Finally…

11710812

9654

23

1

32

Buildheap pseudocode

private void buildHeap() {

for (int i = currentSize/2; i > 0; i--)

percolateDown(i);

}

runtime:

33

Buildheap Analysis

n/4 nodes percolate at most 1 level

n/8 percolate at most 2 levels

n/16 percolate at most 3 levels

...

runtime:

