CSE 332: Data Structures

Asymptotic Analysis I

Richard Anderson, Steve Seitz
Winter 2014

Announcements

e Due next week
- Project 1A, Monday, 11:59 PM
- Homework 1, Wednesday, beginning of class
- Project 1B, Thursday, 11:59 PM

Linear Search Analysis

bool LinearArrayContains (int arrayl[], int n, int key) {
for(int i = 0; i < n; i++) {
1f(array[i] == key)
// Found it! Best Case:
return true; 4

}

return false;

Worst Case:
3n+3

Binary Search Analysis

2 s[5 @] o] s]] &)

bool BinArrayContains(int array[], int low, int high, int key) {
// The subarray is empty
if(low > high) return false;

// Search this subarray recursively Best case:
int mid = (high + low) / 2; .
if(key == arraylmid]) { 5 at [middle]

return true;
) else if(key < array[mid]) {

return BinArrayFind(array, low, mid-1, key);
) else {

return BinArrayFind(array, mid+l, high, key);

) Worst case:
7 Lllognl +9

Linear search—empirical analysis

time
(# 0ps) o

N (= array size)

Each search produces a dot in above graph.
Blue = less frequently occurring, Red = more frequent

4
Binary search—empirical analysis
140
time ™
(# 0ops) 1w
R B
N (= array size)
Each search produces a dot in above graph. 6

Blue = less frequently occurring, Red = more frequent

Empirical comparison

time
(# ops)

N (= array size) © N (= armay size)

Linear search Binary search

Gives additional information

Fast Computer vs. Slow Computer

500

Fast Computer vs. Smart Programmer
(small data)

351
0 linear search on Pentium-1V
binary search on 486 e
300 I
250
£ 200
£
o
£ 150
100 + | -
/ o
-~
50 |/ _
o
////
o l=—"""
0 20 40 60 80 100
#elts to be searched 3

| linear search on Pentium-IlV. ——
450 ’w linear search on 486 ——-
400
350
o 300
£ /
£ 250 F |
g
= 200
150
100 o
f o
50 |/ -
o
0
0 20 40 60 80 100
elts to be searched
Fast Computer vs. Smart Programmer
(big data)
1000 linear search on Pentium-IV — e
binary search on 486 pd
-
800 7
-
-
v
s
2 600 -
£ e
@ T
£ —
= 400) — //
//,
200 //
e
pd
0 =~
0 200 400 600 800 1000

#elts to be searched

Asymptotic Analysis
e Consider only the order of the running time
- A valuable tool when the input gets “large”

- Ignores the effects of different machines or
different implementations of same algorithm

Asymptotic Analysis
¢ To find the asymptotic runtime, throw

away the constants and low-order
terms

- Linear search is T, (n)=3n+3c0(n)

- Binary search is T (n)=7|log,n]+9O(logn)

Remember: the “fastest” algorithm has the
slowest growing function for its runtime

Asymptotic Analysis

Eliminate low order terms
-4n+ 5=
-05nlogn+2n+7=
-n3+32"+8n=>

Eliminate coefficients
-4n =
-0.5nlogn=
-32"=>

Properties of Logs

Basic:
o A9 — B
* log\A =

Independent of base:
e log(AB) =

¢ log(A/B) =
* log(A®) =

* log((A®)) =

Properties of Logs

Changing base —» multiply by constant
- For example: log,x = 3.22 log;pX

- More generally

log,n= _r logg n
A7 \logg A) 7°

- Means we can ignore the base for
asymptotic analysis
(since we're ignoring constant multipliers)

Another example

¢ Eliminate
low-order
terms

16n3logg(10n?) + 100n2

¢ Eliminate
constant
coefficients

Comparing functions

e f(n) is an upper bound for h(n)
if h(n) < f(n) for all n

This is too strict — we mostly care about /arge n

Still too strict if we want to ignore scale factors

Definition of Order Notation
e h(n) € O(f(n)) Big-O “Order”

if there exist positive constants c and n,
such that h(n) < cf(n) foralln = ng

O(f(n)) defines a class (set) of functions

Order Notation: Intuition

12000

n"3+ 2n"2

100n72 + 1000 ——

10000

8000

a(n) = n®+ 2n? 6000
b(n) = 100n2 + 1000 40, |

2000

0

1 2 3 4 s 6 T 8 9

Although not yet apparent, as n gets “sufficiently
large”, a(n) will be “greater than or equal to” b(n)
19

10

Order Notation: Example

Ge+06 T

"3+ 2n' 2
Be+06 | 100072 + 1000

Te+06 |-
6es06 |
50406 |- /
ae+06 |
3e+06 |
20406 |

1e+06 | A

0 =
20 40 60 80 100 120 140 160 180 200

100n2 + 1000 < (n3 + 2n2?) for alln > 100

S0 10002 + 1000 € O(n3 + 2n?) »

Example
h(n) e O(f(n)) iff there exist positive

constants ¢ and n, such that:
h(n) < cf(n) foralln=>n,

Example:
100n% + 1000 <1 (n3 + 2n2?) for alln > 100

So 100n2 + 1000 € O(n3 + 2n2?)

Constants are not unique
h(n) € O(f(n)) iff there exist positive

constants c and n, such that:
h(n) < cf(n) foralln=>n,

Example:
100n% + 1000 <1 (n3+ 2n2?) for alln > 100

100n2 + 1000 < 1/2 (n® + 2n?) for all n > 198

Another Example: Binary Search
h(n) e O(f(n)) iff there exist positive

constants ¢ and n, such that:
h(n) < cf(n) foralln>=n,

Is 7log,n + 9 € O (log,n)?

Order Notation:
Worst Case Binary Search

Some Notes on Notation

Sometimes you'll see (e.g., in Weiss)
h(n) = O(f(n))
or
h(n) is O(f(n))
These are equivalent to

h(n) e O(f(n))

Big-O: Common Names

- constant: O(1)

- logarithmic: O(log n) (logyn, log n2 € O(log n))
- linear: O(n)

- log-linear: O(n log n)

- quadratic: 0o(n2)

- cubic: o(n3)

- polynomial: 0O(nk) (k is a constant)

- exponential: O(c") (cis a constant > 1)

Asymptotic Lower Bounds

e Q(g(n)) is the set of all functions
asymptotically greater than or equal to g(n)

h(n) e Q(g(n)) iff
There exist ¢>0 and n,>0 such that h(n) > ¢
g(n) foralln>n,

Asymptotic Tight Bound

e 0(f(n)) is the set of all functions
asymptotically equal to f (n)

e h(n) € 0(f(n)) iff
h(n) € O(f(n)) and h(n) € Q(f(n))
- This is equivalent to:
rI‘imh(n)/f(n):c;to

Full Set of Asymptotic Bounds

e O(f(n)) is the set of all functions
asymptotically less than or equal to f(n)
- 0o(f(n)) is the set of all functions
asymptotically strictly less than f(n)

e Q(g(n)) is the set of all functions
asymptotically greater than or equal to g(n)
- o(g(n)) is the set of all functions
asymptotically strictly greater than g(n)

e O(f(n)) is the set of all functions
asymptotically equal to f (n)

Formal Definitions

e h(n) € O(f(n)) iff
There exist c>0 and n,>0 such that h(n) < c f(n) for all n 2 n,

e h(n) e o(f(n)) iff
There exists an n,>0 such that h(n) < c f(n) forallc>0and n=x=n,
- This is equivalent to: limh(n)/f(n)=0

e h(n) e Q(g(n)) iff
There exist ¢>0 and n,>0 such that h(n) > c g(n) for all n = n,

e h(n) € o(g(n)) iff
There exists an n,>0 such that h(n) > c g(n) for all c>0 and n > n,
- This is equivalent to: limh(n)/ g(n) =

. hgng e 0(f(n)) iff
h(n) € O(f(n)’) and h(n) e Q(f(n))
- This is equivalent to: limh(n)/f(n)=c=0

Big-Omega et al. Intuitively

Asymptotic Notation Mathematics
Relation
o <
Q >
0 =
o <
® >

Complexity cases (revisited)

Problem size N
- Worst-case complexity: max # steps
algorithm takes on “most challenging” input
of size N
- Best-case complexity: min # steps
algorithm takes on “easiest” input of size N

- Average-case complexity: avg # steps
algorithm takes on random inputs of size N
- Amortized complexity: max total # steps
algorithm takes on M “most challenging”
consecutive inputs of size N, divided by M

(i.e., divide the max total by M).

Bounds vs. Cases
Two orthogonal axes:

- Bound Flavor
* Upper bound (O, o)
e Lower bound (Q, o)
* Asymptotically tight (6)

- Analysis Case
o Worst Case (Adversary), T,orst(N)
* Average Case, T,4(n)
* Best Case, Theq(n)
o Amortized, T,mon(N)

One can estimate the bounds for any given case.
33

Bounds vs. Cases

Pros and Cons
of Asymptotic Analysis

Big-Oh Caveats

e Asymptotic complexity (Big-Oh) considers only large n
- You can “abuse” it to be misled about trade-offs
- Example: n1/10 vs, 1og n
* Asymptotically n'/1® grows more quickly
e But the “cross-over” point is around 5 * 1017
e S0 n1/10 better for almost any real problem

e Comparing O() for small n values can be misleading
- Quicksort: O(nlogn)
- Insertion Sort: O(n2)
- Yet in reality Insertion Sort is faster for small n
- We'll learn about these sorts later

