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Announcements 

• Due next week 

– Project 1A,  Monday, 11:59 PM 

– Homework 1,  Wednesday, beginning of class 

– Project 1B,  Thursday,  11:59 PM 
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Linear Search Analysis 

bool LinearArrayContains(int array[], int n, int key ) { 

 for( int i = 0; i < n; i++ ) {  

  if( array[i] == key ) 

      // Found it! 

      return true; 

 } 

 return false; 

} 

 

 

Best Case: 

 4 

 

 

Worst Case: 

 3n+3 
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Binary Search Analysis 

bool BinArrayContains( int array[], int low, int high, int key ) { 

 // The subarray is empty 
 if( low > high ) return false; 

 

 // Search this subarray recursively 
 int mid = (high + low) / 2; 

 if( key == array[mid] ) { 

     return true; 

 } else if( key < array[mid] ) { 

     return BinArrayFind( array, low, mid-1, key ); 

 } else { 

     return BinArrayFind( array, mid+1, high, key ); 

} 

 

 

Best case: 

 5 at [middle] 

 

 

Worst case: 

 7 log n + 9 

 

2 3 5 16 37 50 73 75 
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Linear search—empirical analysis 

N (= array size) 

time 

(# ops) 

Each search produces a dot in above graph. 

Blue = less frequently occurring, Red = more frequent 
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Binary search—empirical analysis 

N (= array size) 

time 

(# ops) 

Each search produces a dot in above graph. 

Blue = less frequently occurring, Red = more frequent 
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Empirical comparison 

N (= array size) 

time 

(# ops) 

N (= array size) 

Linear search Binary search 

Gives additional information 
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Fast Computer vs. Slow Computer 

9 

Fast Computer vs. Smart Programmer 

(small data) 
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Fast Computer vs. Smart Programmer 

(big data) 
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Asymptotic Analysis 

• Consider only the order of the running time 
 

– A valuable tool when the input gets “large” 

 

– Ignores the effects of different machines or 

different implementations of same algorithm 
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Asymptotic Analysis 

• To find the asymptotic runtime, throw 
away the constants and low-order 
terms 

 
– Linear search is 

 

– Binary search is 

Remember: the “fastest” algorithm has the 

slowest growing function for its runtime 

)(33)( nOnnT LS

worst 

  )(log9log7)( 2 nOnnT BS

worst 
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Asymptotic Analysis 

Eliminate low order terms 

– 4n + 5  

– 0.5 n log n + 2n + 7  

– n3 + 3 2n + 8n   

 

Eliminate coefficients 
– 4n  

– 0.5 n log n  

– 3 2n => 
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Properties of Logs 

Basic: 

• A
logAB

 = B 

• logAA = 

  

Independent of base: 

• log(AB) = 

 

• log(A/B) = 

 

• log(AB) = 

 

• log((AB)
C
) = 

 

Changing base   multiply by constant 

– For example:  log2x = 3.22 log10x  

 

– More generally 

 

 

 

– Means we can ignore the base for 
asymptotic analysis  
(since we’re ignoring constant multipliers) 
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Properties of Logs 

n
A

n B

B

A log
log

1
log 









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Another example 

• Eliminate  
low-order  
terms 

 

• Eliminate  
constant  
coefficients 

16n3log8(10n2) + 100n2 
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Comparing functions 

• f(n) is an upper bound for h(n) 

   if h(n) ≤ f(n) for all n 

 

 

This is too strict – we mostly care about large n 

 

 

Still too strict if we want to ignore scale factors 
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Definition of Order Notation 

• h(n) є O(f(n))              Big-O  “Order” 

   if there exist positive constants c and n0 

   such that h(n) ≤ c f(n) for all n ≥ n0 

  

 

O(f(n)) defines a class (set) of functions 
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Order Notation: Intuition 

Although not yet apparent, as n gets “sufficiently 
large”, a(n) will be “greater than or equal to” b(n)  

a(n) = n3 + 2n2 

b(n) = 100n2 + 1000 
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Order Notation: Example 

100n2 + 1000    (n3 + 2n2) for all n  100 

So 100n2 + 1000  O(n3 + 2n2) 
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Example 

h(n)  O( f(n) )     iff there exist positive 
constants c and n0 such that:  
h(n)   c f(n) for all n  n0 

 

Example: 

100n2 + 1000   1 (n3 + 2n2) for all n  100 
 
  So 100n2 + 1000  O(n3 + 2n2 ) 

 

 
22 

Constants are not unique 

h(n)  O( f(n) )     iff there exist positive 
constants c and n0 such that:  
h(n)   c f(n) for all n  n0 

 

Example: 

100n2 + 1000   1 (n3 + 2n2) for all n  100 

 

100n2 + 1000   1/2 (n3 + 2n2) for all n  198 
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Another Example:  Binary Search 

h(n)  O( f(n) )     iff there exist positive 
constants c and n0 such that:  
h(n)   c f(n) for all n  n0 

 

Is 7log2n + 9  O (log2n)? 
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Order Notation: 

Worst Case Binary Search 
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Some Notes on Notation 

Sometimes you’ll see (e.g., in Weiss) 

    

h(n) = O( f(n) ) 

 

or 

 

h(n) is O( f(n) ) 

 

These are equivalent to 

    

h(n)  O( f(n) ) 
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Big-O: Common Names 

– constant: O(1) 

– logarithmic: O(log n) (logkn, log n2  O(log n)) 

– linear:  O(n) 

– log-linear: O(n log n) 

– quadratic: O(n2) 

– cubic:  O(n3) 

– polynomial: O(nk)  (k is a constant) 

– exponential: O(cn)  (c is a constant > 1) 

27 

Asymptotic Lower Bounds 

• ( g(n) ) is the set of all functions 
asymptotically greater than or equal to g(n) 

 

• h(n)  ( g(n) ) iff 
There exist c>0 and n0>0 such that h(n)  c 
g(n) for all n  n0 
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Asymptotic Tight Bound 

• ( f(n) ) is the set of all functions 
asymptotically equal to f (n) 

 
• h(n)  ( f(n) ) iff 

    h(n)  O( f(n) ) and h(n)  (f(n) ) 

 - This is equivalent to: 

 lim ( )/ ( ) 0
n

h n f n c


 
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Full Set of Asymptotic Bounds 

• O( f(n) ) is the set of all functions 
asymptotically less than or equal to f(n) 

– o(f(n) ) is the set of all functions 
asymptotically strictly less than f(n) 

 

• ( g(n) ) is the set of all functions 
asymptotically greater than or equal to g(n) 

– ( g(n) ) is the set of all functions 
asymptotically strictly greater than g(n) 

 

• ( f(n) ) is the set of all functions 
asymptotically equal to f (n) 
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• h(n)  O( f(n) ) iff  
There exist c>0 and n0>0 such that h(n)   c f(n) for all n  n0 

 
• h(n)  o(f(n)) iff  

There exists an n0>0 such that h(n) <  c f(n) for all c>0 and   n  n0  
– This is equivalent to: 

 

• h(n)  ( g(n) ) iff 
There exist c>0 and n0>0 such that h(n)  c g(n) for all n  n0 

 

• h(n)  ( g(n) ) iff 
There exists an n0>0 such that h(n) > c g(n) for all c>0 and n  n0  

– This is equivalent to: 

 

• h(n)  ( f(n) ) iff 
h(n)  O( f(n) ) and h(n)  (f(n) ) 
– This is equivalent to: 

 

Formal Definitions 

lim ( )/ ( ) 0
n

h n f n




lim ( )/ ( )
n

h n g n




lim ( )/ ( ) 0
n

h n f n c


 
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Big-Omega et al. Intuitively 

Asymptotic Notation Mathematics 
Relation 

O  

  

 = 

o < 

 > 
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Complexity cases (revisited) 

Problem size N 
– Worst-case complexity: max # steps 

algorithm takes on “most challenging” input 
of size N 

– Best-case complexity: min # steps 
algorithm takes on “easiest” input of size N 

 

– Average-case complexity: avg # steps 
algorithm takes on random inputs of size N 

– Amortized complexity: max total # steps 
algorithm takes on M “most challenging” 
consecutive inputs of size N, divided by M 
(i.e., divide the max total by M). 
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Bounds vs. Cases 
Two orthogonal axes: 

 

– Bound Flavor 

• Upper bound (O, o) 

• Lower bound (, ) 

• Asymptotically tight () 

 

– Analysis Case 

• Worst Case (Adversary), Tworst(n) 

• Average Case, Tavg(n) 

• Best Case, Tbest(n) 

• Amortized, Tamort(n) 

 

One can estimate the bounds for any given case. 
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Bounds vs. Cases 
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Pros and Cons  

of Asymptotic Analysis 
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Big-Oh Caveats 
• Asymptotic complexity (Big-Oh) considers only large n 

– You can “abuse” it to be misled about trade-offs 

– Example: n1/10 vs. log n 

• Asymptotically n1/10 grows more quickly 

• But the “cross-over” point is around 5 * 1017 

• So n1/10 better for almost any real problem 
 

• Comparing O() for small n values can be misleading 

– Quicksort: O(nlogn)  

– Insertion Sort: O(n2) 

– Yet in reality Insertion Sort is faster for small n 

– We’ll learn about these sorts later 


