
1

CSE 332: Data Structures

Asymptotic Analysis II

Richard Anderson, Steve Seitz

Winter 2014

2

Announcements

• Due next week

– Project 1A, Monday, 11:59 PM

– Homework 1, Wednesday, beginning of class

– Project 1B, Thursday, 11:59 PM

3

Linear Search Analysis

bool LinearArrayContains(int array[], int n, int key) {

 for(int i = 0; i < n; i++) {

 if(array[i] == key)

 // Found it!

 return true;

 }

 return false;

}

Best Case:

 4

Worst Case:

 3n+3

4

Binary Search Analysis

bool BinArrayContains(int array[], int low, int high, int key) {

 // The subarray is empty
 if(low > high) return false;

 // Search this subarray recursively
 int mid = (high + low) / 2;

 if(key == array[mid]) {

 return true;

 } else if(key < array[mid]) {

 return BinArrayFind(array, low, mid-1, key);

 } else {

 return BinArrayFind(array, mid+1, high, key);

}

Best case:

 5 at [middle]

Worst case:

 7 log n + 9

2 3 5 16 37 50 73 75

5

Linear search—empirical analysis

N (= array size)

time

(# ops)

Each search produces a dot in above graph.

Blue = less frequently occurring, Red = more frequent
6

Binary search—empirical analysis

N (= array size)

time

(# ops)

Each search produces a dot in above graph.

Blue = less frequently occurring, Red = more frequent

2

7

Empirical comparison

N (= array size)

time

(# ops)

N (= array size)

Linear search Binary search

Gives additional information

8

Fast Computer vs. Slow Computer

9

Fast Computer vs. Smart Programmer

(small data)

10

Fast Computer vs. Smart Programmer

(big data)

11

Asymptotic Analysis

• Consider only the order of the running time

– A valuable tool when the input gets “large”

– Ignores the effects of different machines or

different implementations of same algorithm

12

Asymptotic Analysis

• To find the asymptotic runtime, throw
away the constants and low-order
terms

– Linear search is

– Binary search is

Remember: the “fastest” algorithm has the

slowest growing function for its runtime

)(33)(nOnnT LS

worst 

 )(log9log7)(2 nOnnT BS

worst 

3

13

Asymptotic Analysis

Eliminate low order terms

– 4n + 5 

– 0.5 n log n + 2n + 7 

– n3 + 3 2n + 8n 

Eliminate coefficients
– 4n 

– 0.5 n log n 

– 3 2n =>

14

Properties of Logs

Basic:

• A
logAB

 = B

• logAA =

Independent of base:

• log(AB) =

• log(A/B) =

• log(AB) =

• log((AB)
C
) =

Changing base  multiply by constant

– For example: log2x = 3.22 log10x

– More generally

– Means we can ignore the base for
asymptotic analysis
(since we’re ignoring constant multipliers)

15

Properties of Logs

n
A

n B

B

A log
log

1
log 










16

Another example

• Eliminate
low-order
terms

• Eliminate
constant
coefficients

16n3log8(10n2) + 100n2

17

Comparing functions

• f(n) is an upper bound for h(n)

 if h(n) ≤ f(n) for all n

This is too strict – we mostly care about large n

Still too strict if we want to ignore scale factors

18

Definition of Order Notation

• h(n) є O(f(n)) Big-O “Order”

 if there exist positive constants c and n0

 such that h(n) ≤ c f(n) for all n ≥ n0

O(f(n)) defines a class (set) of functions

4

19

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently
large”, a(n) will be “greater than or equal to” b(n)

a(n) = n3 + 2n2

b(n) = 100n2 + 1000

20

Order Notation: Example

100n2 + 1000  (n3 + 2n2) for all n  100

So 100n2 + 1000  O(n3 + 2n2)

21

Example

h(n)  O(f(n)) iff there exist positive
constants c and n0 such that:
h(n)  c f(n) for all n  n0

Example:

100n2 + 1000  1 (n3 + 2n2) for all n  100

 So 100n2 + 1000  O(n3 + 2n2)

22

Constants are not unique

h(n)  O(f(n)) iff there exist positive
constants c and n0 such that:
h(n)  c f(n) for all n  n0

Example:

100n2 + 1000  1 (n3 + 2n2) for all n  100

100n2 + 1000  1/2 (n3 + 2n2) for all n  198

23

Another Example: Binary Search

h(n)  O(f(n)) iff there exist positive
constants c and n0 such that:
h(n)  c f(n) for all n  n0

Is 7log2n + 9  O (log2n)?

24

Order Notation:

Worst Case Binary Search

5

25

Some Notes on Notation

Sometimes you’ll see (e.g., in Weiss)

h(n) = O(f(n))

or

h(n) is O(f(n))

These are equivalent to

h(n)  O(f(n))

26

Big-O: Common Names

– constant: O(1)

– logarithmic: O(log n) (logkn, log n2  O(log n))

– linear: O(n)

– log-linear: O(n log n)

– quadratic: O(n2)

– cubic: O(n3)

– polynomial: O(nk) (k is a constant)

– exponential: O(cn) (c is a constant > 1)

27

Asymptotic Lower Bounds

• (g(n)) is the set of all functions
asymptotically greater than or equal to g(n)

• h(n)  (g(n)) iff
There exist c>0 and n0>0 such that h(n)  c
g(n) for all n  n0

28

Asymptotic Tight Bound

• (f(n)) is the set of all functions
asymptotically equal to f (n)

• h(n)  (f(n)) iff

 h(n)  O(f(n)) and h(n)  (f(n))

 - This is equivalent to:

 lim ()/ () 0
n

h n f n c


 

29

Full Set of Asymptotic Bounds

• O(f(n)) is the set of all functions
asymptotically less than or equal to f(n)

– o(f(n)) is the set of all functions
asymptotically strictly less than f(n)

• (g(n)) is the set of all functions
asymptotically greater than or equal to g(n)

– (g(n)) is the set of all functions
asymptotically strictly greater than g(n)

• (f(n)) is the set of all functions
asymptotically equal to f (n)

30

• h(n)  O(f(n)) iff
There exist c>0 and n0>0 such that h(n)  c f(n) for all n  n0

• h(n)  o(f(n)) iff

There exists an n0>0 such that h(n) < c f(n) for all c>0 and n  n0
– This is equivalent to:

• h(n)  (g(n)) iff
There exist c>0 and n0>0 such that h(n)  c g(n) for all n  n0

• h(n)  (g(n)) iff
There exists an n0>0 such that h(n) > c g(n) for all c>0 and n  n0

– This is equivalent to:

• h(n)  (f(n)) iff
h(n)  O(f(n)) and h(n)  (f(n))
– This is equivalent to:

Formal Definitions

lim ()/ () 0
n

h n f n




lim ()/ ()
n

h n g n




lim ()/ () 0
n

h n f n c


 

6

31

Big-Omega et al. Intuitively

Asymptotic Notation Mathematics
Relation

O 

 

 =

o <

 >

32

Complexity cases (revisited)

Problem size N
– Worst-case complexity: max # steps

algorithm takes on “most challenging” input
of size N

– Best-case complexity: min # steps
algorithm takes on “easiest” input of size N

– Average-case complexity: avg # steps
algorithm takes on random inputs of size N

– Amortized complexity: max total # steps
algorithm takes on M “most challenging”
consecutive inputs of size N, divided by M
(i.e., divide the max total by M).

33

Bounds vs. Cases
Two orthogonal axes:

– Bound Flavor

• Upper bound (O, o)

• Lower bound (, )

• Asymptotically tight ()

– Analysis Case

• Worst Case (Adversary), Tworst(n)

• Average Case, Tavg(n)

• Best Case, Tbest(n)

• Amortized, Tamort(n)

One can estimate the bounds for any given case.

34

Bounds vs. Cases

35

Pros and Cons

of Asymptotic Analysis

36

Big-Oh Caveats
• Asymptotic complexity (Big-Oh) considers only large n

– You can “abuse” it to be misled about trade-offs

– Example: n1/10 vs. log n

• Asymptotically n1/10 grows more quickly

• But the “cross-over” point is around 5 * 1017

• So n1/10 better for almost any real problem

• Comparing O() for small n values can be misleading

– Quicksort: O(nlogn)

– Insertion Sort: O(n2)

– Yet in reality Insertion Sort is faster for small n

– We’ll learn about these sorts later

