

Announcements

- Due next week
- Project 1A, Monday, 11:59 PM
- Homework 1, Wednesday, beginning of class
- Project 1B, Thursday, 11:59 PM

if (low > high) return false:
// Search this subarray recursively
int mid $=($ high + low $) / 2 ;$
11(key $==$ array
return true;
5 at [middle]
) else if (key < array [mid])
return BinArrayFind(array, low, mid-1, key);
return BinArrayFind(array, mid+1, high, key)
Worst case:
$7\lfloor\log n\rfloor+9$
// The subarray is empty
// The subarray is empty

Binary Search Analysis

Fast Computer vs. Slow Computer

Fast Computer vs. Smart Programmer (small data)

Asymptotic Analysis

- Consider only the order of the running time
- A valuable tool when the input gets "large"
- Ignores the effects of different machines or different implementations of same algorithm

Asymptotic Analysis

- To find the asymptotic runtime, throw away the constants and low-order terms
- Linear search is $T_{\text {worrs }}^{L S}(n)=3 n+3 \in O(n)$
- Binary search is $T_{\text {worst }}^{B S}(n)=7\left\lfloor\log _{2} n\right\rfloor+9 \in O(\log n)$

Remember: the "fastest" algorithm has the slowest growing function for its runtime

Asymptotic Analysis

Eliminate low order terms

$$
-4 n+5 \Rightarrow
$$

$-0.5 n \log n+2 n+7 \Rightarrow$
$-n^{3}+32^{n}+8 n \Rightarrow$

Eliminate coefficients
 $-4 n \Rightarrow$
 $-0.5 n \log n \Rightarrow$
 $-32^{n}=>$

Comparing functions

- $f(n)$ is an upper bound for $h(n)$
if $h(n) \leq f(n)$ for all n

This is too strict - we mostly care about large n

Still too strict if we want to ignore scale factors

Properties of Logs

Basic:

- $A^{\log _{A} B}=B$
- $\log _{A} A=$

Independent of base:

- $\log (\mathrm{AB})=$
- $\log (\mathrm{A} / \mathrm{B})=$
- $\log \left(A^{B}\right)=$
- $\log \left(\left(A^{B}\right)^{C}\right)=$

Properties of Logs

Changing base \rightarrow multiply by constant - For example: $\log _{2} x=3.22 \log _{10} x$

- More generally

$$
\log _{A} n=\left(\frac{1}{\log _{B} A}\right) \log _{B} n
$$

- Means we can ignore the base for asymptotic analysis
(since we're ignoring constant multipliers)
Properties of Logs
Changing base \rightarrow multiply by constant
- For example: $\log _{2} x=3.22 \log _{10} \mathrm{x}$
- More generally
$\log _{A} n=\left(\frac{1}{\log _{B} A}\right) \log _{B} n$
- Means we can ignore the base for
asymptotic analysis
(since we're ignoring constant multipliers)

Another example

- Eliminate low-order $\quad 16 n^{3} \log _{8}\left(10 \mathrm{n}^{2}\right)+100 \mathrm{n}^{2}$ terms
- Eliminate constant coefficients

Definition of Order Notation

- $h(n) \in O(f(n)) \quad B i g-O$ "Order" if there exist positive constants c and n_{0} such that $h(n) \leq c f(n)$ for all $n \geq n_{0}$
$O(f(n))$ defines a class (set) of functions

Although not yet apparent, as n gets "sufficiently large", $a(n)$ will be "greater than or equal to" $b(n)$

Order Notation: Example

$100 n^{2}+1000 \leq\left(n^{3}+2 n^{2}\right)$ for all $n \geq 100$
So $100 n^{2}+1000 \in \mathrm{O}\left(n^{3}+2 n^{2}\right)$

Example

$h(n) \in O(f(n)) \quad$ iff there exist positive constants c and n_{0} such that:
$h(n) \leq c f(n)$ for all $n \geq n_{0}$

Example:
$100 n^{2}+1000 \leq 1\left(n^{3}+2 n^{2}\right)$ for all $n \geq 100$

$$
\text { So } 100 n^{2}+1000 \in O\left(n^{3}+2 n^{2}\right)
$$

Constants are not unique
$h(n) \in O(f(n)) \quad$ iff there exist positive constants c and n_{0} such that: $h(n) \leq c f(n)$ for all $n \geq n_{0}$

Example:

$100 n^{2}+1000 \leq 1\left(n^{3}+2 n^{2}\right)$ for all $n \geq 100$
$100 n^{2}+1000 \leq 1 / 2\left(n^{3}+2 n^{2}\right)$ for all $n \geq 198$

Another Example: Binary Search
$h(n) \in O(f(n)) \quad$ iff there exist positive constants c and n_{0} such that: $h(n) \leq c f(n)$ for all $n \geq n_{0}$

Is $7 \log _{2} n+9 \in O\left(\log _{2} n\right)$?

Some Notes on Notation

Sometimes you'll see (e.g., in Weiss)

$$
h(n)=O(f(n))
$$

or

$$
h(n) \text { is } \mathrm{O}(f(n))
$$

These are equivalent to

$$
h(n) \in O(f(n))
$$

Asymptotic Lower Bounds

- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
- $h(n) \in \Omega(g(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \geq c$
$\mathrm{g}(n)$ for all $n \geq n_{0}$

Full Set of Asymptotic Bounds

- $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
$-o(f(n))$ is the set of all functions asymptotically strictly less than $f(n)$
- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
$-\omega(g(n))$ is the set of all functions asymptotically strictly greater than $g(n)$
- $\theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	\leq
Ω	\geq
θ	$=$
0	$>$

Bounds vs. Cases

Two orthogonal axes:

- Bound Flavor
- Upper bound (0,0)
- Lower bound (Ω, ω)
- Asymptotically tight (θ)
- Analysis Case
- Worst Case (Adversary), $T_{\text {worst }}(n)$
- Average Case, $T_{\text {avg }}(n)$
- Best Case, $T_{\text {best }}(n)$
- Amortized, $T_{\text {amort }}(n)$

One can estimate the bounds for any given case.
Bounds VS. Cases
Two orthogonal axes:

- Bound Flavor
• Upper bound $(0, o)$
• Lower bound (Ω, ω)
• Asymptotically tight (θ)
- Analysis Case
• Worst Case (Adversary), $T_{\text {worst }}(n)$
• Average Case, $T_{\text {avg }}(n)$
• Best Case, $T_{\text {best }}(n)$
• Amortized, $T_{\text {amort }}(n)$
One can estimate the bounds for any given case.
33

Pros and Cons
 Asymptotic Analysis

Complexity cases (revisited)

Problem size \mathbf{N}

- Worst-case complexity: max \# steps algorithm takes on "most challenging" input of size \mathbf{N}
- Best-case complexity: min \# steps algorithm takes on "easiest" input of size \mathbf{N}
- Average-case complexity: avg \# steps algorithm takes on random inputs of size \mathbf{N}
- Amortized complexity: max total \# steps algorithm takes on M "most challenging" consecutive inputs of size \mathbf{N}, divided by \mathbf{M} (i.e., divide the max total by M)

Bounds vs. Cases

Big-Oh Caveats

- Asymptotic complexity (Big-Oh) considers only large n
- You can "abuse" it to be misled about trade-offs
- Example: $n^{1 / 10}$ vs. $\log n$
- Asymptotically $n^{1 / 10}$ grows more quickly
- But the "cross-over" point is around $5 * 10^{17}$
- So $n^{1 / 10}$ better for almost any real problem
- Comparing $O()$ for small \boldsymbol{n} values can be misleading
- Quicksort: O(nlogn)
- Insertion Sort: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Yet in reality Insertion Sort is faster for small n
- We'll learn about these sorts later

