Announcements

- Due next week
 - Project 1A, Monday, 11:59 PM
 - Homework 1, Wednesday, beginning of class
 - Project 1B, Thursday, 11:59 PM

Linear Search Analysis

```c
bool LinearArrayContains(int array[], int n, int key) {
    for(int i = 0; i < n; i++) {
        if(array[i] == key) {
            // Found it!
            return true;
        }
    }
    return false;
}
```

Best Case: 4

Worst Case: $3n + 3$

Binary Search Analysis

```c
bool BinArrayContains(int array[], int low, int high, int key) {
    // The subarray is empty
    if(low > high) return false;
    // Search this subarray recursively
    int mid = (high + low) / 2;
    if(key == array[mid]) {
        return true;
    } else if(key < array[mid]) {
        return BinArrayFind(array, low, mid - 1, key);
    } else {
        return BinArrayFind(array, mid + 1, high, key);
    }
}
```

Best case: 5 at $[\text{middle}]$

Worst case: $7 \lfloor \log n \rfloor + 9$

Linear search—empirical analysis

![Linear search empirical analysis graph](image)

Each search produces a dot in above graph.

Blue = less frequently occurring, Red = more frequent

Binary search—empirical analysis

![Binary search empirical analysis graph](image)

Each search produces a dot in above graph.

Blue = less frequently occurring, Red = more frequent
Empirical comparison

Fast Computer vs. Slow Computer

Fast Computer vs. Smart Programmer (small data)

Fast Computer vs. Smart Programmer (big data)

Asymptotic Analysis

- Consider only the order of the running time
 - A valuable tool when the input gets “large”
 - Ignores the effects of different machines or different implementations of same algorithm

Asymptotic Analysis

- To find the asymptotic runtime, throw away the constants and low-order terms
 - Linear search is $T_{LS}^{worst}(n) = 3n + 3 \in O(n)$
 - Binary search is $T_{BS}^{worst}(n) = \lceil \log_2 n \rceil + 9 \in O(\log n)$

Remember: the “fastest” algorithm has the slowest growing function for its runtime
Asymptotic Analysis

Eliminate low order terms
- \(4n + 5\) \(\Rightarrow\)
- \(0.5n \log n + 2n + 7\) \(\Rightarrow\)
- \(n^3 + 3 \cdot 2^n + 8n\) \(\Rightarrow\)

Eliminate coefficients
- \(-4n\) \(\Rightarrow\)
- \(-0.5n \log n\) \(\Rightarrow\)
- \(-3 \cdot 2^n\) \(\Rightarrow\)

Properties of Logs

Basic:
- \(A^{\log_A B} = B\)
- \(\log_A A =\)

Independent of base:
- \(\log(AB) =\)
- \(\log(A/B) =\)
- \(\log(A^B) =\)
- \(\log((A^B)^C) =\)

Properties of Logs

Changing base \(\rightarrow\) multiply by constant
- For example: \(\log_2 x = 3.22 \log_{10} x\)
- More generally

 \[\log_a n = \left(\frac{1}{\log_a A}\right) \log_A n \]
- Means we can ignore the base for asymptotic analysis (since we’re ignoring constant multipliers)

Comparing functions

- \(f(n)\) is an upper bound for \(h(n)\)
 if \(h(n) \leq f(n)\) for all \(n\)

This is too strict – we mostly care about large \(n\)

Still too strict if we want to ignore scale factors

Definitions of Order Notation

- \(h(n) \in O(f(n))\) \(\text{Big-O “Order”}\)
 if there exist positive constants \(c\) and \(n_0\) such that \(h(n) \leq c f(n)\) for all \(n \geq n_0\)

\(O(f(n))\) defines a class (set) of functions
Order Notation: Intuition

Although not yet apparent, as \(n \) gets "sufficiently large", \(a(n) \) will be "greater than or equal to" \(b(n) \)

\[
a(n) = n^3 + 2n^2
\]
\[
b(n) = 100n^2 + 1000
\]

Example

\(h(n) \in O(f(n)) \) \text{ iff there exist positive constants } c \text{ and } n_0 \text{ such that:}
\n\[
h(n) \leq c f(n) \text{ for all } n \geq n_0
\]

Example:

\[
100n^2 + 1000 \leq 1 (n^3 + 2n^2) \text{ for all } n \geq 100
\]

So \(100n^2 + 1000 \in O(n^3 + 2n^2) \)

Another Example: Binary Search

\(h(n) \in O(f(n)) \) \text{ iff there exist positive constants } c \text{ and } n_0 \text{ such that:}
\n\[
h(n) \leq c f(n) \text{ for all } n \geq n_0
\]

Is \(7\log_2 n + 9 \in O(\log n) \)?

Order Notation: Example

\[
100n^2 + 1000 \leq (n^3 + 2n^2) \text{ for all } n \geq 100
\]

So \(100n^2 + 1000 \in O(n^3 + 2n^2) \)

Constants are not unique

\(h(n) \in O(f(n)) \) \text{ iff there exist positive constants } c \text{ and } n_0 \text{ such that:}
\n\[
h(n) \leq c f(n) \text{ for all } n \geq n_0
\]

Example:

\[
100n^2 + 1000 \leq 1/2 (n^3 + 2n^2) \text{ for all } n \geq 198
\]

Order Notation: Worst Case Binary Search
Some Notes on Notation

Sometimes you’ll see (e.g., in Weiss)

\[h(n) = O(f(n)) \]

or

\[h(n) \text{ is } O(f(n)) \]

These are equivalent to

\[h(n) \in O(f(n)) \]

Big-O: Common Names

- constant: \(O(1) \)
- logarithmic: \(O(\log n) \) \((\log_2 n, \log n^2 \in O(\log n)) \)
- linear: \(O(n) \)
- log-linear: \(O(n \log n) \)
- quadratic: \(O(n^2) \)
- cubic: \(O(n^3) \)
- polynomial: \(O(n^k) \) \((k \text{ is a constant}) \)
- exponential: \(O(c^n) \) \((c \text{ is a constant } > 1) \)

Asymptotic Lower Bounds

\[\Omega(g(n)) \] is the set of all functions
asymptotically greater than or equal to \(g(n) \)

\[h(n) \in \Omega(g(n)) \text{ iff} \]

There exist \(c > 0 \) and \(n_0 > 0 \) such that \(h(n) \geq c \ g(n) \) for all \(n \geq n_0 \)

Asymptotic Tight Bound

\[\Theta(f(n)) \] is the set of all functions
asymptotically equal to \(f(n) \)

\[h(n) \in \Theta(f(n)) \text{ iff} \]

\[h(n) \in O(f(n)) \text{ and } h(n) \in \Omega(f(n)) \]

- This is equivalent to:
\[
\lim_{n \to \infty} \frac{h(n)}{f(n)} = c \neq 0
\]

Full Set of Asymptotic Bounds

\[O(f(n)) \] is the set of all functions
asymptotically less than or equal to \(f(n) \)

\[o(f(n)) \] is the set of all functions
asymptotically strictly less than \(f(n) \)

\[\Omega(g(n)) \] is the set of all functions
asymptotically greater than or equal to \(g(n) \)

\[o(g(n)) \] is the set of all functions
asymptotically strictly greater than \(g(n) \)

\[\Theta(f(n)) \] is the set of all functions
asymptotically equal to \(f(n) \)

Formal Definitions

\[h(n) \in O(f(n)) \text{ iff} \]

There exist \(c > 0 \) and \(n_0 > 0 \) such that \(h(n) \leq c \ f(n) \) for all \(n \geq n_0 \)

\[h(n) \in o(f(n)) \text{ iff} \]

There exists an \(n_0 > 0 \) such that \(h(n) < c \ f(n) \) for all \(c > 0 \) and \(n \geq n_0 \)

- This is equivalent to:
\[
\lim_{n \to \infty} \frac{h(n)}{f(n)} = 0
\]

\[h(n) \in \Omega(g(n)) \text{ iff} \]

There exist \(c > 0 \) and \(n_0 > 0 \) such that \(h(n) \geq c \ g(n) \) for all \(n \geq n_0 \)

\[h(n) \in o(g(n)) \text{ iff} \]

There exists an \(n_0 > 0 \) such that \(h(n) > c \ g(n) \) for all \(c > 0 \) and \(n \geq n_0 \)

- This is equivalent to:
\[
\lim_{n \to \infty} \frac{h(n)}{g(n)} = \infty
\]

\[h(n) \in \Theta(f(n)) \text{ iff} \]

\[h(n) \in O(f(n)) \text{ and } h(n) \in \Omega(f(n)) \]

- This is equivalent to:
\[
\lim_{n \to \infty} \frac{h(n)}{f(n)} = c \neq 0
\]
Big-Omega et al. Intuitively

<table>
<thead>
<tr>
<th>Asymptotic Notation</th>
<th>Mathematics Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>\leq</td>
</tr>
<tr>
<td>Ω</td>
<td>\geq</td>
</tr>
<tr>
<td>Θ</td>
<td>$=$</td>
</tr>
<tr>
<td>o</td>
<td>$<$</td>
</tr>
<tr>
<td>ω</td>
<td>$>$</td>
</tr>
</tbody>
</table>

Complexity cases (revisited)

Problem size N

- **Worst-case complexity:** \max # steps algorithm takes on “most challenging” input of size N
- **Best-case complexity:** \min # steps algorithm takes on “easiest” input of size N
- **Average-case complexity:** avg # steps algorithm takes on random inputs of size N
- **Amortized complexity:** \max total # steps algorithm takes on M “most challenging” consecutive inputs of size N, divided by M (i.e., divide the max total by M).

Bounds vs. Cases

Two orthogonal axes:

- **Bound Flavor**
 - Upper bound (O, o)
 - Lower bound (Ω, ω)
 - Asymptotically tight (Θ)

- **Analysis Case**
 - Worst Case (Adversary), $T_{\text{worst}}(n)$
 - Average Case, $T_{\text{avg}}(n)$
 - Best Case, $T_{\text{best}}(n)$
 - Amortized, $T_{\text{amort}}(n)$

One can estimate the bounds for any given case.

Pros and Cons of Asymptotic Analysis

- Asymptotic complexity (Big-Oh) considers only large n
 - You can “abuse” it to be misled about trade-offs
 - Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the “cross-over” point is around 5×10^{17}
 - So $n^{1/10}$ better for almost any real problem
- Comparing $O()$ for small n values can be misleading
 - Quicksort: $O(n \log n)$
 - Insertion Sort: $O(n^2)$
 - Yet in reality Insertion Sort is faster for small n
 - We’ll learn about these sorts later

Big-Oh Caveats