

Announcements

- Due next week
 - Project 1A, Monday, 11:59 PM
 - Homework 1, Wednesday, beginning of class

2

Project 1B, Thursday, 11:59 PM

Example
$h(n) \in O(f(n))$ iff there exist positive constants c and n_0 such that: $h(n) \le c f(n)$ for all $n \ge n_0$
Example: $100n^2 + 1000 \le 1 (n^3 + 2n^2)$ for all $n \ge 100$
So $100n^2 + 1000 \in O(n^3 + 2n^2)$
21

27

- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to g(n)
- $h(n) \in \Omega(g(n))$ iff There exist c > 0 and $n_0 > 0$ such that $h(n) \ge c$ g(n) for all $n \ge n_0$

Asymptotic Tight Bound • $\theta(f(n))$ is the set of all functions asymptotically equal to f(n)• $h(n) \in \Theta(f(n))$ iff $h(n) \in O(f(n))$ and $h(n) \in \Omega(f(n))$ - This is equivalent to: $\lim h(n)/f(n) = c \neq 0$ 28

26

Asymptotic Notation	Mathematics Relation
0	\leq
Ω	≥
θ	=
0	<
ω	>

Complexity cases (revisited)

Problem size N

- Worst-case complexity: max # steps algorithm takes on "most challenging" input of size N
- Best-case complexity: min # steps algorithm takes on "easiest" input of size N
- Average-case complexity: avg # steps algorithm takes on random inputs of size N
- Amortized complexity: max total # steps algorithm takes on M "most challenging" consecutive inputs of size N, divided by M (i.e., divide the max total by M).

32

Bounds vs. Cases Two orthogonal axes: • Sound Flavor • Open bound (0, 0) • Open bound (0,

6