CSE 332: Data Structures

Asymptotic Analysis

Richard Anderson, Steve Seitz Winter 2014

Announcements

- Homework requires you get the textbook (either E2 or E3)
- Go to Thursdays sections
- Homework #1 out on today (Wednesday)
 - Due at the beginning of class next Wednesday(Jan 17).

Algorithm Analysis

- Correctness:
 - Does the algorithm do what is intended.
- Performance:
 - Speed time complexity
 - Memory space complexity
- Why analyze?
 - To make good design decisions
 - Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.

Correctness

Correctness of an algorithm is established by proof. Common approaches:

- (Dis)proof by counterexample $Fb(3) \neq 2$
- Proof by contradiction
- Proof by induction
 - Especially useful in recursive algorithms

Proof by Induction

- **Base Case:** The algorithm is correct for a base case or two by inspection.
- Inductive Hypothesis (n=k): Assume that the algorithm works correctly for the first k cases.
- **Inductive Step (n=k+1):** Given the hypothesis above, show that the k+1 case will be calculated correctly.

Recursive algorithm for sum

 Write a *recursive* function to find the sum of the first **n** integers stored in array **v**.

```
sum(int array v, int n) returns int
if n = 0 then
sum = 0
else
sum = nth number + sum of first n-1 numbers
return sum
```

Program Correctness by Induction

• Base Case: N=D: Sum (V, C) = O

- Inductive Hypothesis (n=k): $Sum(v, k) = \sum_{k=0}^{k} V[v]$
- Inductive Step (n=k+1): Sum (v, K+1) = v[k+1] + Sum(v, k)

How to measure performance?

Analyzing Performance

We will focus on analyzing time complexity. First, we have some "rules" to help measure how long it takes to do things:

Basic operationsConstant timeConsecutive statementsSum of timesConditionalsTest, plus larger branch costLoopsSum of iterationsFunction callsCost of function bodyRecursive functionsSolve recurrence relation...

Second, we will be interested in **best** and **worst** case performance.

Complexity cases

We'll start by focusing on two cases.

Problem size N

- Worst-case complexity: max # steps algorithm takes on "most challenging" input of size N
- Best-case complexity: min # steps algorithm takes on "easiest" input of size N

Exercise - Searching 2 3 5 16 37 50 73 75

bool ArrayContains(int array[], int n, int key){
 // Insert your algorithm here

}

What algorithm would you choose to implement this code snippet?

Linear Search Analysis

```
bool LinearArrayContains(int array[], int n, int key ) {
    for( int i = 0; i < n; i++ ) {
        if( array[i] == key )
            // Found it!
            return true;
    }
    return false;
}
Worst Case:</pre>
```

```
Binary Search Analysis
                                        3
                                              5
                                                        37
                                                              50
                                                                   73
                                                                         75
                                  2
                                                   16
bool BinArrayContains( int array[], int low, int high, int key ) {
   // The subarray is empty
   if ( low > high ) return false;
                                                      Best case:
   // Search this subarray recursively
   int mid = (high + low) / 2;
   if( key == array[mid] ) {
       return true;
   } else if( key < array[mid] ) {</pre>
       return BinArrayFind( array, low, mid-1, key );
                                                      Worst case:
   } else {
       return BinArrayFind( array, mid+1, high, key );
}
```

Solving Recurrence Relations

- 1. Determine the recurrence relation and base case(s).
- 2. "Expand" the original relation to find an equivalent expression *in terms of the number of expansions (k)*.

3. Find a closed-form expression by setting *k* to a value which reduces the problem to a base case

Linear Search vs Binary Search

	Linear Search	Binary Search
Best Case	4	5 at [middle]
Worst Case	3n+3	7

Linear search—empirical analysis

Blue = less frequently occurring, Red = more frequent

Empirical comparison

Gives additional information

Fast Computer vs. Slow Computer

Fast Computer vs. Smart Programmer (small data)

Fast Computer vs. Smart Programmer (big data)

Asymptotic Analysis

- Consider only the *order* of the running time
 - A valuable tool when the input gets "large"
 - Ignores the effects of *different machines* or *different implementations* of same algorithm

Asymptotic Analysis

- To find the asymptotic runtime, throw away the constants and low-order terms
 - Linear search is $T_{worst}^{LS}(n) = 3n + 3 \in O(n)$
 - Binary search is $T_{worst}^{BS}(n) = 7 \lfloor \log_2 n \rfloor + 9 \in O(\log n)$

Remember: the "fastest" algorithm has the slowest growing function for its runtime

Asymptotic Analysis

Eliminate low order terms

- $-4n + 5 \Rightarrow$
- 0.5 n log n + 2n + 7 \Rightarrow
- n^3 + 3 2^n + 8n \Rightarrow

Eliminate coefficients

- 4n ⇒ - 0.5 n log n ⇒ - 3 2ⁿ =>

Properties of Logs

Basic:

- $A^{\log_A B} = B$
- $log_A A =$

Independent of base:

- log(AB) =
- log(A/B) =
- $log(A^B) =$
- $log((A^B)^C) =$

Properties of Logs

Changing base \rightarrow multiply by constant – For example: $\log_2 x = 3.22 \log_{10} x$

- More generally

$$\log_A n = \left(\frac{1}{\log_B A}\right) \log_B n$$

 Means we can ignore the base for asymptotic analysis (since we're ignoring constant multipliers)

Another example

 Eliminate low-order terms

 $16n^{3}\log_{8}(10n^{2}) + 100n^{2}$

 Eliminate constant coefficients

Comparing functions

f(n) is an **upper bound** for h(n)
 if h(n) ≤ f(n) for all n

This is too strict – we mostly care about *large* n

Still too strict if we want to ignore *scale factors*

Definition of Order Notation

• $h(n) \in O(f(n))$ Big-O "Order" if there exist positive constants c and n_0 such that $h(n) \le c f(n)$ for all $n \ge n_0$

O(f(n)) defines a class (set) of functions

Although not yet apparent, as *n* gets "sufficiently" large", a(n) will be "greater than or equal to" b(n)30

Order Notation: Example

31

Example

$h(n) \in O(f(n))$ iff there exist positive constants *c* and n_0 such that: $h(n) \leq c f(n)$ for all $n \geq n_0$

Example:

 $100n^2 + 1000 \le 1(n^3 + 2n^2)$ for all $n \ge 100$

So $100n^2 + 1000 \in O(n^3 + 2n^2)$

Constants are not unique

 $h(n) \in O(f(n))$ iff there exist positive constants *c* and n_0 such that: $h(n) \leq c f(n)$ for all $n \geq n_0$

Example:

 $100n^2 + 1000 \le 1(n^3 + 2n^2)$ for all $n \ge 100$

 $100n^2 + 1000 \le 1/2 (n^3 + 2n^2)$ for all $n \ge 198$

Another Example: Binary Search

 $h(n) \in O(f(n))$ iff there exist positive constants *c* and n_0 such that: $h(n) \leq c f(n)$ for all $n \geq n_0$

Is $7log_2n + 9 \in O(log_2n)$?

Order Notation: Worst Case Binary Search

Some Notes on Notation

Sometimes you'll see (e.g., in Weiss)

h(n) = O(f(n))

or

h(*n*) is O(*f*(*n*))

These are equivalent to

 $h(n) \in O(f(n))$

Big-O: Common Names

- constant:O(1)- logarithmic:O(log n) $(log_k n, log n^2 \in O(log n))$ - linear:O(n)- log-linear:O(n log n)- quadratic:O(n^2)- cubic:O(n^3)- polynomial:O(n^k)- exponential:O(c^n)

Asymptotic Lower Bounds

- Ω(g(n)) is the set of all functions asymptotically greater than or equal to g(n)
- $h(n) \in \Omega(g(n))$ iff There exist c>0 and $n_0>0$ such that $h(n) \ge c$ g(n) for all $n \ge n_0$

Asymptotic Tight Bound

- θ(f(n)) is the set of all functions asymptotically equal to f (n)
- $h(n) \in \Theta(f(n))$ iff $h(n) \in O(f(n))$ and $h(n) \in \Omega(f(n))$ - This is equivalent to: $\lim h(n)/f(n) = c \neq 0$

 $n \rightarrow \infty$

Full Set of Asymptotic Bounds

- O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - o(f(n)) is the set of all functions asymptotically strictly less than f(n)
- Ω(g(n)) is the set of all functions asymptotically greater than or equal to g(n)
 - $\omega(g(n))$ is the set of all functions asymptotically strictly greater than g(n)
- θ(f(n)) is the set of all functions asymptotically equal to f (n)

Formal Definitions

- $h(n) \in O(f(n))$ iff There exist c>0 and $n_0>0$ such that $h(n) \leq c f(n)$ for all $n \geq n_0$
- $h(n) \in O(f(n))$ iff There exists an $n_0 > 0$ such that h(n) < c f(n) for all c > 0 and $n \ge n_0$ – This is equivalent to: $\lim h(n)/f(n) = 0$
- $h(n) \in \Omega(g(n))$ iff There exist c>0 and $n_0>0$ such that $h(n) \ge c g(n)$ for all $n \ge n_0$
- $h(n) \in \omega(g(n))$ iff There exists an $n_0 > 0$ such that h(n) > c g(n) for all c > 0 and $n \ge n_0$ – This is equivalent to: $\lim_{n \to \infty} h(n)/g(n) = \infty$
- $h(n) \in \Theta(f(n))$ iff $h(n) \in O(f(n))$ and $h(n) \in \Omega(f(n))$ - This is equivalent to: $\lim_{n \to \infty} h(n)/f(n) = c \neq 0$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	\leq
Ω	\geq
θ	=
0	<
ω	>

Complexity cases (revisited)

Problem size N

- Worst-case complexity: max # steps algorithm takes on "most challenging" input of size N
- Best-case complexity: min # steps algorithm takes on "easiest" input of size N
- Average-case complexity: avg # steps algorithm takes on random inputs of size N
- Amortized complexity: max total # steps algorithm takes on M "most challenging" consecutive inputs of size N, divided by M (i.e., divide the max total by M).

Bounds vs. Cases

Two <u>orthogonal</u> axes:

- Bound Flavor

- Upper bound (O, o)
- Lower bound (Ω , ω)
- Asymptotically tight (θ)
- Analysis Case
 - Worst Case (Adversary), $T_{worst}(n)$
 - Average Case, $T_{avg}(n)$
 - Best Case, $T_{\text{best}}(n)$
 - Amortized, $T_{amort}(n)$

One can estimate the bounds for any given case.

Bounds vs. Cases

Pros and Cons of Asymptotic Analysis

Big-Oh Caveats

- Asymptotic complexity (Big-Oh) considers only **large** *n*
 - You can "abuse" it to be misled about trade-offs
 - Example: $n^{1/10}$ vs. log n
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the "cross-over" point is around 5 * 10^{17}
 - So $n^{1/10}$ better for almost any real problem
- Comparing O() for *small n* values can be misleading
 - Quicksort: O(nlogn)
 - Insertion Sort: O(n²)
 - Yet in reality Insertion Sort is faster for small n
 - We'll learn about these sorts later