Announcements

• Homework requires you get the textbook (either E2 or E3)

• Go to Thursdays sections

• Homework #1 out on today (Wednesday)
 - Due at the beginning of class next Wednesday (Jan 17).
Algorithm Analysis

• Correctness:
 – Does the algorithm do what is intended.

• Performance:
 – Speed \(\text{time complexity} \)
 – Memory \(\text{space complexity} \)

• Why analyze?
 – To make good design decisions
 – Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.
Correctness

Correctness of an algorithm is established by proof. Common approaches:

– (Dis)proof by counterexample
– Proof by contradiction
– Proof by induction
 • Especially useful in recursive algorithms

$Fib(3) \neq 2$
Proof by Induction

• **Base Case:** The algorithm is correct for a base case or two by inspection.

• **Inductive Hypothesis \((n=k)\):** Assume that the algorithm works correctly for the first \(k\) cases.

• **Inductive Step \((n=k+1)\):** Given the hypothesis above, show that the \(k+1\) case will be calculated correctly.
Recursive algorithm for *sum*

- Write a *recursive* function to find the sum of the first n integers stored in array v.

```c
sum(int array v, int n) returns int
    if n = 0 then
        sum = 0
    else
        sum = nth number + sum of first n-1 numbers
    return sum
```
Program Correctness by Induction

• Base Case: \(n=0 \): \(\sum (v_i, 0) = 0 \)

• Inductive Hypothesis (n=k):
 \[
 \sum (v_i, k) = \sum_{i=0}^{k} v_i
 \]

• Inductive Step (n=k+1):
 \[
 \sum (v_i, k+1) = v_{k+1} + \sum (v_i, k)
 \]
How to measure performance?
Analyzing Performance

We will focus on analyzing time complexity. First, we have some “rules” to help measure how long it takes to do things:

- **Basic operations** Constant time
- **Consecutive statements** Sum of times
- **Conditionals** Test, plus larger branch cost
- **Loops** Sum of iterations
- **Function calls** Cost of function body
- **Recursive functions** Solve recurrence relation...

Second, we will be interested in best and worst case performance.
Complexity cases

We’ll start by focusing on two cases.

Problem size N

- **Worst-case complexity**: max # steps algorithm takes on “most challenging” input of size N

- **Best-case complexity**: min # steps algorithm takes on “easiest” input of size N
Exercise - Searching

```
bool ArrayContains(int array[], int n, int key){
    // Insert your algorithm here
}
```

What algorithm would you choose to implement this code snippet?
Linear Search Analysis

bool LinearArrayContains(int array[], int n, int key) {
 for (int i = 0; i < n; i++) {
 if (array[i] == key) {
 // Found it!
 return true;
 }
 }
 return false;
}
bool BinArrayContains(int array[], int low, int high, int key) {
 // The subarray is empty
 if(low > high) return false;

 // Search this subarray recursively
 int mid = (high + low) / 2;
 if(key == array[mid]) {
 return true;
 } else if(key < array[mid]) {
 return BinArrayFind(array, low, mid-1, key);
 } else {
 return BinArrayFind(array, mid+1, high, key);
 }
}
Solving Recurrence Relations

1. Determine the recurrence relation and base case(s).

2. “Expand” the original relation to find an equivalent expression *in terms of the number of expansions* \((k)\).

3. Find a closed-form expression by setting \(k\) to a value which reduces the problem to a base case.
Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>4</td>
<td>5 at [middle]</td>
</tr>
<tr>
<td>Worst Case</td>
<td>$3n+3$</td>
<td>$7 \lfloor \log n \rfloor + 9$</td>
</tr>
</tbody>
</table>
Linear search—empirical analysis

Each search produces a dot in above graph. Blue = less frequently occurring, Red = more frequent
Binary search—empirical analysis

Each search produces a dot in above graph. Blue = less frequently occurring, Red = more frequent
Empirical comparison

<table>
<thead>
<tr>
<th>N (= array size)</th>
<th>time (# ops)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear search</td>
<td></td>
</tr>
<tr>
<td>Binary search</td>
<td></td>
</tr>
</tbody>
</table>

Gives additional information
Fast Computer vs. Slow Computer

The diagram illustrates the comparison between the time taken for linear search on a Pentium-IV and a 486 processor as a function of the number of elements to be searched. The graph shows a linear relationship with time in milliseconds on the y-axis and the number of elements to be searched on the x-axis. The Pentium-IV performs significantly faster than the 486 processor.
Fast Computer vs. Smart Programmer
(small data)

The graph compares the time in milliseconds for linear search on a Pentium-IV processor and binary search on a 486 processor, as a function of the number of elements to be searched.
Fast Computer vs. Smart Programmer (big data)
Asymptotic Analysis

• Consider only the order of the running time
 – A valuable tool when the input gets “large”
 – *Ignores* the effects of *different machines* or *different implementations* of same algorithm
Asymptotic Analysis

• To find the asymptotic runtime, throw away the constants and low-order terms

 – Linear search is \(T^{LS}_{worst}(n) = 3n + 3 \in O(n) \)

 – Binary search is \(T^{BS}_{worst}(n) = 7 \lceil \log_2 n \rceil + 9 \in O(\log n) \)

Remember: the “fastest” algorithm has the slowest growing function for its runtime
Asymptotic Analysis

Eliminate low order terms
- $4n + 5 \Rightarrow$
- $0.5n \log n + 2n + 7 \Rightarrow$
- $n^3 + 3 \ 2^n + 8n \Rightarrow$

Eliminate coefficients
- $4n \Rightarrow$
- $0.5n \log n \Rightarrow$
- $3 \ 2^n \Rightarrow$
Properties of Logs

Basic:
• $A^{\log_A B} = B$
• $\log_A A =$

Independent of base:
• $\log(AB) =$
• $\log(A/B) =$
• $\log(A^B) =$
• $\log((A^B)^C) =$
Properties of Logs

Changing base → multiply by constant
 - For example: $\log_2 x = 3.22 \log_{10} x$

 - More generally

 $$\log_A n = \left(\frac{1}{\log_B A} \right) \log_B n$$

 - Means we can ignore the base for asymptotic analysis
 (since we’re ignoring constant multipliers)
Another example

- Eliminate low-order terms

- Eliminate constant coefficients

\[16n^3\log_8(10n^2) + 100n^2 \]
Comparing functions

• $f(n)$ is an **upper bound** for $h(n)$
 if $h(n) \leq f(n)$ for all n

This is too strict – we mostly care about *large* n

Still too strict if we want to ignore *scale factors*
Definition of Order Notation

- $h(n) \in O(f(n))$ \textbf{Big-O “Order”}

 if there exist positive constants c and n_0

 such that $h(n) \leq c f(n)$ for all $n \geq n_0$

$O(f(n))$ defines a class (set) of functions
Order Notation: Intuition

Although not yet apparent, as \(n \) gets "sufficiently large", \(a(n) \) will be "greater than or equal to" \(b(n) \).

\[
a(n) = n^3 + 2n^2 \\
b(n) = 100n^2 + 1000
\]
Order Notation: Example

\[100n^2 + 1000 \leq (n^3 + 2n^2) \text{ for all } n \geq 100 \]

So \(100n^2 + 1000 \in O(n^3 + 2n^2) \)
Example

\[h(n) \in O(f(n)) \quad \text{iff there exist positive constants } c \text{ and } n_0 \text{ such that:} \]
\[h(n) \leq c f(n) \text{ for all } n \geq n_0 \]

Example:

\[100n^2 + 1000 \leq 1 (n^3 + 2n^2) \text{ for all } n \geq 100 \]

So \[100n^2 + 1000 \in O(n^3 + 2n^2) \]
Constants are not unique

\[h(n) \in O(f(n)) \] iff there exist positive constants \(c \) and \(n_0 \) such that:
\[h(n) \leq c f(n) \text{ for all } n \geq n_0 \]

Example:

\[100n^2 + 1000 \leq 1 (n^3 + 2n^2) \text{ for all } n \geq 100 \]

\[100n^2 + 1000 \leq 1/2 (n^3 + 2n^2) \text{ for all } n \geq 198 \]
Another Example: Binary Search

\[h(n) \in O\left(f(n) \right) \quad \text{iff there exist positive constants } c \text{ and } n_0 \text{ such that:} \]
\[h(n) \leq c f(n) \text{ for all } n \geq n_0 \]

Is \(7\log_2 n + 9 \in O\left(\log_2 n \right) \)?
Order Notation:
Worst Case Binary Search
Some Notes on Notation

Sometimes you’ll see (e.g., in Weiss)

\[h(n) = O(f(n)) \]

or

\[h(n) \text{ is } O(f(n)) \]

These are equivalent to

\[h(n) \in O(f(n)) \]
Big-O: Common Names

- constant: \(O(1) \)
- logarithmic: \(O(\log n) \) \((\log_k n, \log n^2 \in O(\log n))\)
- linear: \(O(n) \)
- log-linear: \(O(n \log n) \)
- quadratic: \(O(n^2) \)
- cubic: \(O(n^3) \)
- polynomial: \(O(n^k) \) \((k \text{ is a constant})\)
- exponential: \(O(c^n) \) \((c \text{ is a constant } > 1)\)
Asymptotic Lower Bounds

• $\Omega(g(n))$ is the set of all functions asymptotically \textbf{greater than or equal} to $g(n)$

• $h(n) \in \Omega(g(n))$ iff
 There exist $c>0$ and $n_0>0$ such that $h(n) \geq c g(n)$ for all $n \geq n_0$
Asymptotic Tight Bound

- \(\theta(f(n)) \) is the set of all functions asymptotically equal to \(f(n) \)

- \(h(n) \in \theta(f(n)) \) iff
 \(h(n) \in O(f(n)) \) and \(h(n) \in \Omega(f(n)) \)
 - This is equivalent to:
 \[
 \lim_{n \to \infty} \frac{h(n)}{f(n)} = c \neq 0
 \]
Full Set of Asymptotic Bounds

- $\mathcal{O}(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
 - $o(f(n))$ is the set of all functions asymptotically strictly less than $f(n)$

- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
 - $\omega(g(n))$ is the set of all functions asymptotically strictly greater than $g(n)$

- $\Theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$
Formal Definitions

- \(h(n) \in \mathcal{O}(f(n)) \) iff

 There exist \(c > 0 \) and \(n_0 > 0 \) such that \(h(n) \leq c f(n) \) for all \(n \geq n_0 \)

- \(h(n) \in \omega(f(n)) \) iff

 There exists an \(n_0 > 0 \) such that \(h(n) > c f(n) \) for all \(c > 0 \) and \(n \geq n_0 \)

 – This is equivalent to: \(\lim_{n \to \infty} h(n)/f(n) = \infty \)

- \(h(n) \in \Theta(g(n)) \) iff

 There exist \(c > 0 \) and \(n_0 > 0 \) such that \(h(n) \geq c g(n) \) for all \(n \geq n_0 \)

- \(h(n) \in \omega(g(n)) \) iff

 There exists an \(n_0 > 0 \) such that \(h(n) > c g(n) \) for all \(c > 0 \) and \(n \geq n_0 \)

 – This is equivalent to: \(\lim_{n \to \infty} h(n)/g(n) = \infty \)

- \(h(n) \in \Omega(f(n)) \) iff

 \(h(n) \in \mathcal{O}(f(n)) \) and \(h(n) \in \Omega(f(n)) \)

 – This is equivalent to: \(\lim_{n \to \infty} h(n)/f(n) = c \neq 0 \)
Big-Omega et al. Intuitively

<table>
<thead>
<tr>
<th>Asymptotic Notation</th>
<th>Mathematics Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>\leq</td>
</tr>
<tr>
<td>Ω</td>
<td>\geq</td>
</tr>
<tr>
<td>θ</td>
<td>$=$</td>
</tr>
<tr>
<td>o</td>
<td>$<$</td>
</tr>
<tr>
<td>ω</td>
<td>$>$</td>
</tr>
</tbody>
</table>
Complexity cases (revisited)

Problem size N

- **Worst-case complexity**: max # steps algorithm takes on “most challenging” input of size N

- **Best-case complexity**: min # steps algorithm takes on “easiest” input of size N

- **Average-case complexity**: avg # steps algorithm takes on random inputs of size N

- **Amortized complexity**: max total # steps algorithm takes on M “most challenging” consecutive inputs of size N, divided by M (i.e., divide the max total by M).
Bounds vs. Cases

Two **orthogonal** axes:

- **Bound Flavor**
 - Upper bound (O, o)
 - Lower bound (Ω, ω)
 - Asymptotically tight (θ)

- **Analysis Case**
 - Worst Case (Adversary), $T_{\text{worst}}(n)$
 - Average Case, $T_{\text{avg}}(n)$
 - Best Case, $T_{\text{best}}(n)$
 - Amortized, $T_{\text{amort}}(n)$

One can estimate the bounds for any given case.
Bounds vs. Cases
Pros and Cons of Asymptotic Analysis
Big-Oh Caveats

- Asymptotic complexity (Big-Oh) considers only large n
 - You can “abuse” it to be misled about trade-offs
 - Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the “cross-over” point is around 5×10^{17}
 - So $n^{1/10}$ better for almost any real problem

- Comparing $O()$ for small n values can be misleading
 - Quicksort: $O(n \log n)$
 - Insertion Sort: $O(n^2)$
 - Yet in reality Insertion Sort is faster for small n
 - We’ll learn about these sorts later