Mergesort example: Merge as we return from
recursive calls
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We need another array in which to do each merging step; merge
I results into there, then copy back to original array

Dijkstra’s Algorithm Overview

*Given a weighted graph and a vertex in the graph (call it A), find
the shortest path from A to each other vertex
*Cost of path defined as sum of weights of edges

*Negative edges not allowed
vertex | known? cost path
. A
*The algorithm: S ?0?
*Create a table like this: - 97
eInit A’s cost to 0, others —
D ?2?

infinity (or just ??7)
*While there are unknown vertices:
*Select unknown vertex w/ lowest cost (A initially)
*Mark it as known
*Update cost and path to all uknown vertices adjacent to

that vertex

Parallelism Overview

» We say it takes time Tp to complete a task with P
processors
» Adding together an array of n elements would take O(n)
time, when done sequentially (that is, P=1)
Called the work; T,
» If we have ‘enough’ processors, we can do it much faster;
O(logn) time
Called the span; T,
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Considering Parallel Run-time

Our f or k and j 0i n frequently look like this:

divide

{) } base cases
combine
results

*Each node takes O(I) time

. Even the base cases, as they are at the cut-off
*Sequentially, we can do this in O(n) time; O(l) for each node, ~3n nodes, if there were
no cut-off (linear # on base case row, halved each row up/down)
*Carrying this out in (perfect) parallel will take the time of the longest branch; ~2logn, if

we halve each time
4




Some Parallelism Definitions

» Speed-up on P processors: T,/ Tp

» We often assume perfect linear speed-up
Thatis, T,/ T, = P; w/ 2x processors, it’s twice as fast

‘Perfect linear speed-up ’usually our goal; hard to get in practice

» Parallelism is the maximum possible speed-up: T,/ T
At some point, adding processors won’t help
What that point is depends on the span

The ForkJoin Framework Expected
Performance

If you write your program well, you can get the following
expected performance:

Tp = (T, /P)+O(T )

T,/P for the overall work split between P processors

P=4? Each processor takes 1/4 of the total work
O(T ) for merging results

Even if P=co, then we still need to do O(T ) to merge results

» What does it mean??

We can get decent benefit for adding more processors; effectively
linear speed-up at first (expected)

With a large # of processors, we're still bounded by T ; that
term becomes dominant

Amdahl’s Law

Let the work (time to run on | processor) be | unit time

Let S be the portion of the execution that cannot be
parallelized

Then: T,=S+(1-S)=1

Then: Tp=S+ (1-S)/P

Amdahl’s Law: The overall speedup with P processors is:
T,/ Te =1/(S+(1-S)/P)

And the parallelism (infinite processors) is:
T,/T, =1/S

Parallel Prefix Sum

» Given an array of numbers, compute an array of their
running sums in O(logn) span
» Requires 2 passes (each a parallel traversal)
First is to gather information
Second figures out output

input ‘

6
ouput | 6 | 10 | 26 | 36 | 52 | 66 | 68 | 76 |




range 0,8

sum 76
fromleft 0 \

Parallel Prefix Sum

2 passes:
I.Compute ‘sum’

N

2.Compute ‘fromtleft’ range 0,4 range 4,8
sum 36 sum 40
fromleft fromleft 36

— T~

range 0,2 range 2,4 range 4,6 | |range 6,8
sum 10 sum 26 sum 30 sum I
fromleft fromleft 10 fromleft fromleft 66
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input | 6 | 4 | 16 | 10 | 16 | 14 | 2 [ 8 |
ouput | 6 | 10 | 26 | 36 | 52 | 66 | 68 | 76 |

Parallel Quicksort

2 optimizations:
I. Do the two recursive calls in parallel
¢ Now recurrence takes the form:
O(n) + 1T(n/2)
So O(n) span
2. Parallelize the partitioning step
e Partitioning normally O(n) time
* Recall that we can use Parallel Prefix Sum to ffilter’ with O(logn)
span
* Partitioning can be done with 2 filters, so O(logn) span for each
partitioning step
These two parallel optimizations bring parallel quicksort to a span of
O(l og?n)

Race Conditions

A occurs when the computation result depends on
scheduling (how threads are interleaved)
If T1 and T2 happened to get scheduled in a certain way, things go
wrong
We, as programmers, cannot control scheduling of threads; result is
that we need to write programs that work independent of
scheduling

Race conditions are bugs that exist only due to concurrency
No interleaved scheduling with | thread

Typically, problem is that some intermediate state can be seen by
another thread; screws up other thread

Consider a ‘partial’ insert in a linked list; say, a new node has been
added to the end, but ‘back’ and ‘count’ haven’t been updated

Data Races

» A data race is a specific type of race condition that can
happen in 2 ways:
Two different threads can potentially write a variable at the
same time
One thread can potentially write a variable while another
reads the variable
Simultaneous reads are fine; not a data race, and nothing bad
would happen
‘Potentially’ is important; we say the code itself has a data race
— it is independent of an actual execution
» Data races are bad, but we can still have a race condition,
and bad behavior, when no data races are present




Readers /writer locks

0 < writers < 1 &&
0 < readers &&

A new synchronization ADT: The .
writers* readers==0

» ldea: Allow any number of readers OR one writer
» This allows more concurrent access (multiple readers)
» A lock’s states fall into three categories:

“not held”

“held for writing” by one thread

“held for reading” by one or more threads

> make a new lock, initially “not held”

» block if currently “held for reading” or “held for
writing”, else make “held for writing”

> make “not held”

> block if currently “held for writing”, else make/keep
“held for reading” and increment readers count

> decrement readers count, if 0, make “not held”

}

Deadlock
» As illustrated by the ‘The Dining Philosophers’ problem

*A deadlock occurs when there are threads T,
..., Tnsuch that:
*Each is waiting for a lock held by the next
*Tn is waiting for a resource held by T
*In other words, there is a cycle of waiting

BankAccount {

void withdraw (int amt){...}
void deposit (int amt){...}
void transferTo (int amt, BankAccount a){
.withdraw(amt);
a.deposit(amt);

}

Consider simultaneous transfers from account x to accounty,
and y to x




