
Mergesort example: Merge as we return from

recursive calls

1

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

1 3 5 6

We need another array in which to do each merging step; merge
results into there, then copy back to original array

Dijkstra’s Algorithm Overview

2

•Given a weighted graph and a vertex in the graph (call it A), find
the shortest path from A to each other vertex

•Cost of path defined as sum of weights of edges
•Negative edges not allowed

•The algorithm:
•Create a table like this:
•Init A’s cost to 0, others
infinity (or just ‘??’)
•While there are unknown vertices:

•Select unknown vertex w/ lowest cost (A initially)
•Mark it as known
•Update cost and path to all uknown vertices adjacent to
that vertex

vertex known? cost path

A 0

B ??

C ??

D ??

Parallelism Overview

3

� We say it takes time TP to complete a task with P
processors

� Adding together an array of n elements would take O(n)
time, when done sequentially (that is, P=1)

� Called the work; T1

� If we have ‘enough’ processors, we can do it much faster;
O(logn) time

� Called the span; T∞∞∞∞

+ + + + + + + +
+ + + +

+ +
+

Considering Parallel Run-time

4

Our fork and join frequently look like this:

base cases

divide

combine
results

•Each node takes O(1) time
• Even the base cases, as they are at the cut-off
•Sequentially, we can do this in O(n) time; O(1) for each node, ~3n nodes, if there were
no cut-off (linear # on base case row, halved each row up/down)
•Carrying this out in (perfect) parallel will take the time of the longest branch; ~2logn, if
we halve each time

Some Parallelism Definitions

5

� Speed-up on P processors: T1 / TP

� We often assume perfect linear speed-up

� That is, T1 / TP = P; w/ 2x processors, it’s twice as fast

� ‘Perfect linear speed-up ’usually our goal; hard to get in practice

� Parallelism is the maximum possible speed-up: T1 / T ∞∞∞∞
� At some point, adding processors won’t help

� What that point is depends on the span

The ForkJoin Framework Expected

Performance

6

If you write your program well, you can get the following
expected performance:

TP ≤≤≤≤ (T1 / P) + O(T ∞∞∞∞)
� T1/P for the overall work split between P processors

� P=4? Each processor takes 1/4 of the total work

� O(T ∞) for merging results
� Even if P=∞, then we still need to do O(T ∞) to merge results

� What does it mean??
� We can get decent benefit for adding more processors; effectively

linear speed-up at first (expected)

� With a large # of processors, we’re still bounded by T ∞∞∞∞; that
term becomes dominant

Amdahl’s Law

7

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that cannot be
parallelized

Then: T1 = S + (1-S) = 1

Then: TP = S + (1-S)/P

Amdahl’s Law: The overall speedup with P processors is:

T1 / TP = 1 / (S + (1-S)/P)

And the parallelism (infinite processors) is:

T1 / T∞∞∞∞ = 1 / S

Parallel Prefix Sum

8

� Given an array of numbers, compute an array of their
running sums in O(logn) span

� Requires 2 passes (each a parallel traversal)

� First is to gather information

� Second figures out output

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

Parallel Prefix Sum

9

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7.8

s

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

0

0

0

0

36

10 36 666 26 52 68

10 66

36

2 passes:
1.Compute ‘sum’
2.Compute ‘fromtleft’

Parallel Quicksort

10

2 optimizations:

1. Do the two recursive calls in parallel

• Now recurrence takes the form:

O(n) + 1T(n/2)

So O(n) span

2. Parallelize the partitioning step

• Partitioning normally O(n) time

• Recall that we can use Parallel Prefix Sum to ‘filter’ with O(logn)
span

• Partitioning can be done with 2 filters, so O(logn) span for each
partitioning step

These two parallel optimizations bring parallel quicksort to a span of
O(log2n)

Race Conditions

11

A race condition occurs when the computation result depends on
scheduling (how threads are interleaved)
� If T1 and T2 happened to get scheduled in a certain way, things go

wrong
� We, as programmers, cannot control scheduling of threads; result is

that we need to write programs that work independent of
scheduling

Race conditions are bugs that exist only due to concurrency
� No interleaved scheduling with 1 thread

Typically, problem is that some intermediate state can be seen by
another thread; screws up other thread
� Consider a ‘partial’ insert in a linked list; say, a new node has been

added to the end, but ‘back’ and ‘count’ haven’t been updated

Data Races

12

� A data race is a specific type of race condition that can
happen in 2 ways:
� Two different threads can potentially write a variable at the

same time

� One thread can potentially write a variable while another
reads the variable

� Simultaneous reads are fine; not a data race, and nothing bad
would happen

� ‘Potentially’ is important; we say the code itself has a data race
– it is independent of an actual execution

� Data races are bad, but we can still have a race condition,
and bad behavior, when no data races are present

Readers/writer locks

13

A new synchronization ADT: The readers/writer lock

� Idea: Allow any number of readers OR one writer

� This allows more concurrent access (multiple readers)

� A lock’s states fall into three categories:
� “not held”

� “held for writing” by one thread

� “held for reading” by one or more threads

� new: make a new lock, initially “not held”

� acquire_write: block if currently “held for reading” or “held for
writing”, else make “held for writing”

� release_write: make “not held”

� acquire_read: block if currently “held for writing”, else make/keep
“held for reading” and increment readers count

� release_read: decrement readers count, if 0, make “not held”

0 ≤ writers ≤ 1 &&
0 ≤ readers &&
writers* readers==0

Deadlock

14

� As illustrated by the ‘The Dining Philosophers’ problem

•A deadlock occurs when there are threads T1,
…, Tn such that:

•Each is waiting for a lock held by the next
•Tn is waiting for a resource held by T1

•In other words, there is a cycle of waiting

class BankAccount {
…
synchronized void withdraw (int amt) {…}
synchronized void deposit (int amt) {…}
synchronized void transferTo (int amt, BankAccount a){

this .withdraw(amt);
a.deposit(amt);

}
} Consider simultaneous transfers from account x to account y,

and y to x

