
Mergesort example: Merge as we return from 

recursive calls
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8  2   9   4 5   3   1   6

8   2 1   69   4 5   3
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Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4    9 3   5 1   6

1   3   5   6

We need another array in which to do each merging step; merge 
results into there, then copy back to original array

Dijkstra’s Algorithm Overview
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•Given a weighted graph and a vertex in the graph (call it A), find 
the shortest path from A to each other vertex

•Cost of path defined as sum of weights of edges
•Negative edges not allowed

•The algorithm:
•Create a table like this:
•Init A’s cost to 0, others 
infinity (or just ‘??’)
•While there are unknown vertices:

•Select unknown vertex w/ lowest cost (A initially)
•Mark it as known
•Update cost and path to all uknown vertices adjacent to 
that vertex

vertex known? cost path

A 0

B ??

C ??

D ??

Parallelism Overview
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� We say it takes time TP to complete a task with P 
processors

� Adding together an array of n elements would take O(n) 
time, when done sequentially (that is, P=1)

� Called the work; T1

� If we have ‘enough’ processors, we can do it much faster; 
O(logn) time

� Called the span; T∞∞∞∞

+ + + + + + + +
+ + + +

+ +
+

Considering Parallel Run-time

4

Our fork and join frequently look like this:

base cases

divide 

combine 
results 

•Each node takes O(1) time
• Even the base cases, as they are at the cut-off
•Sequentially, we can do this in O(n) time; O(1) for each node, ~3n nodes, if there were 
no cut-off (linear # on base case row, halved each row up/down)
•Carrying this out in (perfect) parallel will take the time of the longest branch; ~2logn, if 
we halve each time



Some Parallelism Definitions
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� Speed-up on P processors: T1 / TP 

� We often assume perfect linear speed-up

� That is, T1 / TP = P; w/ 2x processors, it’s twice as fast

� ‘Perfect linear speed-up ’usually our goal; hard to get in practice

� Parallelism is the maximum possible speed-up: T1 / T ∞∞∞∞
� At some point, adding processors won’t help

� What that point is depends on the span

The ForkJoin Framework Expected 

Performance
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If you write your program well, you can get the following 
expected performance:

TP  ≤≤≤≤ (T1 / P) + O(T ∞∞∞∞)
� T1/P for the overall work split between P processors

� P=4?  Each processor takes 1/4 of the total work

� O(T ∞) for merging results
� Even if P=∞, then we still need to do O(T ∞) to merge results

� What does it mean??
� We can get decent benefit for adding more processors; effectively 

linear speed-up at first (expected)

� With a large # of processors, we’re still bounded by T ∞∞∞∞; that 
term becomes dominant

Amdahl’s Law
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Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that cannot be 
parallelized

Then: T1 = S + (1-S) = 1

Then: TP = S + (1-S)/P

Amdahl’s Law: The overall speedup with P processors is:

T1 / TP = 1 / (S + (1-S)/P)  

And the parallelism (infinite processors) is:

T1 / T∞∞∞∞ = 1 / S

Parallel Prefix Sum
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� Given an array of numbers, compute an array of their 
running sums in O(logn) span

� Requires 2 passes (each a parallel traversal)

� First is to gather information

� Second figures out output

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76



Parallel Prefix Sum
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input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range  0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r  0,1

s  

f

r  1,2

s  

f

r  2,3

s  
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f

r  7.8

s  

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

0

0

0

0

36

10 36 666 26 52 68

10 66

36

2 passes:
1.Compute ‘sum’
2.Compute ‘fromtleft’

Parallel Quicksort
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2 optimizations:

1. Do the two recursive calls in parallel

• Now recurrence takes the form:

O(n) + 1T(n/2)

So O(n) span

2. Parallelize the partitioning step

• Partitioning normally O(n) time

• Recall that we can use Parallel Prefix Sum to ‘filter’ with O(logn)
span

• Partitioning can be done with 2 filters, so O(logn) span for each 
partitioning step

These two parallel optimizations bring parallel quicksort to a span of 
O(log2n)

Race Conditions
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A race condition occurs when the computation result depends on 
scheduling (how threads are interleaved)
� If T1 and T2 happened to get scheduled in a certain way, things go 

wrong
� We, as programmers, cannot control scheduling of threads; result is 

that we need to write programs that work independent of 
scheduling

Race conditions are bugs that exist only due to concurrency
� No interleaved scheduling with 1 thread

Typically, problem is that some intermediate state can be seen by 
another thread; screws up other thread
� Consider a ‘partial’ insert in a linked list; say, a new node has been 

added to the end, but ‘back’ and ‘count’ haven’t been updated

Data Races
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� A data race is a specific type of race condition that can 
happen in 2 ways:
� Two different threads can potentially write a variable at the 

same time

� One thread can potentially write a variable while another 
reads the variable

� Simultaneous reads are fine; not a data race, and nothing bad 
would happen

� ‘Potentially’ is important; we say the code itself has a data race 
– it is independent of an actual execution

� Data races are bad, but we can still have a race condition, 
and bad behavior, when no data races are present



Readers/writer locks

13

A new synchronization ADT: The readers/writer lock

� Idea: Allow any number of readers OR one writer

� This allows more concurrent access (multiple readers)

� A lock’s states fall into three categories:
� “not held”

� “held for writing” by one thread 

� “held for reading” by one or more threads

� new: make a new lock, initially “not held”

� acquire_write: block if currently “held for reading” or “held for 
writing”, else make “held for writing”

� release_write: make “not held”

� acquire_read: block if currently “held for writing”, else make/keep 
“held for reading” and increment readers count

� release_read: decrement readers count, if 0, make “not held”

0 ≤ writers ≤ 1 &&
0 ≤ readers &&
writers* readers==0

Deadlock

14

� As illustrated by the ‘The Dining Philosophers’ problem

•A deadlock occurs when there are threads T1, 
…, Tn such that:

•Each is waiting for a lock held by the next
•Tn is waiting for a resource held by T1

•In other words, there is a cycle of waiting

class BankAccount {
…
synchronized void withdraw (int amt ) {…}
synchronized void deposit (int amt ) {…}
synchronized void transferTo (int amt, BankAccount a){

this .withdraw(amt);
a.deposit(amt);

}  
} Consider simultaneous transfers from account x to account y, 

and y to x


