
CSE 332: Data Abstractions

Lecture 19: Parallel Prefix, Pack, and Sorting

Ruth Anderson

Spring 2014

Outline

Done:

– Simple ways to use parallelism for counting, summing, finding

– Analysis of running time and implications of Amdahl’s Law

Now: Clever ways to parallelize more than is intuitively possible

– Parallel prefix:

• This “key trick” typically underlies surprising parallelization

• Enables other things like packs (aka filters)

– Parallel sorting: quicksort (not in place) and mergesort

• Easy to get a little parallelism

• With cleverness can get a lot

3 5/19/2014

The prefix-sum problem
Given int[] input, produce int[] output where:

 output[i] = input[0]+input[1]+…+input[i]

Sequential can be a CSE142 exam problem:

4

int[] prefix_sum(int[] input){
 int[] output = new int[input.length];
 output[0] = input[0];
 for(int i=1; i < input.length; i++)
 output[i] = output[i-1]+input[i];
 return output;

}

Does not seem parallelizable

– Work: O(n), Span: O(n)

– This algorithm is sequential, but a different algorithm has
Work: O(n), Span: O(log n)

5/19/2014

input
output

6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

Parallel prefix-sum

• The parallel-prefix algorithm does two passes

– Each pass has O(n) work and O(log n) span

– So in total there is O(n) work and O(log n) span

– So like with array summing, parallelism is n/log n

• An exponential speedup

• First pass builds a tree bottom-up: the “up” pass

• Second pass traverses the tree top-down: the “down” pass

5 5/19/2014

Local bragging

Historical note:

– Original algorithm due to R. Ladner and M. Fischer at UW in 1977

– Richard Ladner joined the UW faculty in 1971 and hasn’t left

6 5/19/2014

1968? 1973? recent

Parallel Prefix: The Up Pass

We build want to build a binary tree where
• Root has sum of the range [x,y)

• If a node has sum of [lo,hi) and hi>lo,

– Left child has sum of [lo,middle)

– Right child has sum of [middle,hi)

– A leaf has sum of [i,i+1), which is simply input[i]

It is critical that we actually create the tree as we will
need it for the down pass
• We do not need an actual linked structure

• We could use an array as we did with heaps

Analysis of first step: Work = Span =

7 5/19/2014

The algorithm, part 1

1. Propagate ‘sum’ up: Build a binary tree where

– Root has sum of input[0]..input[n-1]

– Each node has sum of input[lo]..input[hi-1]

• Build up from leaves; parent.sum=left.sum+right.sum

– A leaf’s sum is just it’s value; input[i]

This is an easy fork-join computation: combine results by actually

building a binary tree with all the sums of ranges

– Tree built bottom-up in parallel

– Could be more clever; ex. Use an array as tree representation

like we did for heaps

Analysis of first step: O(n) work, O(log n) span

5/19/2014 8

Specifically…..

input

output

6 4 16 10 16 14 2 8

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7.8

s

f

The (completely non-obvious) idea:

Do an initial pass to gather

information, enabling us to do a

second pass to get the answer

First we’ll gather

the ‘sum’ for each

recursive block

5/19/2014 9

First pass

input

output

6 4 16 10 16 14 2 8

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7.8

s

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

For each node, get

the sum of all values

in its range;

propagate sum up

from leaves

Will work

like parallel

sum, but

recording

intermediate

information

5/19/2014 10

The algorithm, part 2
2. Propagate ‘fromleft’ down:

– Root given a fromLeft of 0

– Node takes its fromLeft value and

• Passes its left child the same fromLeft

• Passes its right child its fromLeft plus its left child’s sum

(as stored in part 1)

– At the leaf for array position i,

output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)

– Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(log n) span

Analysis of second step:

Total for algorithm:
5/19/2014 11

The algorithm, part 2
2. Propagate ‘fromleft’ down:

– Root given a fromLeft of 0

– Node takes its fromLeft value and

• Passes its left child the same fromLeft

• Passes its right child its fromLeft plus its left child’s sum

(as stored in part 1)

– At the leaf for array position i,

output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)

– Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(log n) span

Analysis of second step: O(n) work, O(log n) span

Total for algorithm: O(n) work, O(log n) span
5/19/2014 12

Second pass

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7.8

s

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

0

0

0

0

36

10 36 66 6 26 52 68

10 66

36

Using ‘sum’, get the

sum of everything to

the left of this range

(call it ‘fromleft’);

propagate down from

root

5/19/2014 13

Sequential cut-off

Adding a sequential cut-off isn’t too bad:

• Step One: Propagating Up the sums:

– Have a leaf node just hold the sum of a range of values

instead of just one array value (Sequentially compute sum

for that range)

– The tree itself will be shallower

• Step Two: Propagating Down the fromLefts:

– Have leaf compute prefix sum sequentially over its [lo,hi):

 output[lo] = fromLeft + input[lo];

 for(i=lo+1; i < hi; i++)

 output[i] = output[i-1] + input[i]

5/19/2014 14

Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern,

prefix-sum illustrates a pattern that arises in many, many problems

• Minimum, maximum of all elements to the left of i

• Is there an element to the left of i satisfying some property?

• Count of elements to the left of i satisfying some property

– This last one is perfect for an efficient parallel pack…

– Perfect for building on top of the “parallel prefix trick”

15 5/19/2014

Pack (think “Filter”)

[Non-standard terminology]

Given an array input, produce an array output containing only

elements such that f(element) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

 f: “is element > 10”

 output [17, 11, 13, 19, 24]

Parallelizable?

– Determining whether an element belongs in the output is easy

– But determining where an element belongs in the output is

hard; seems to depend on previous results….

16 5/19/2014

Parallel Pack =

parallel map + parallel prefix + parallel map

1. Parallel map to compute a bit-vector for true elements:

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector:

 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output:

 output [17, 11, 13, 19, 24]

17

output = new array of size bitsum[n-1]

FORALL(i=0; i < input.length; i++){

 if(bits[i]==1)

 output[bitsum[i]-1] = input[i];

}

5/19/2014

In this example,

Filter =

element > 10

Pack comments

• First two steps can be combined into one pass

– Just using a different base case for the prefix sum

– No effect on asymptotic complexity

• Can also combine third step into the down pass of the prefix sum

– Again no effect on asymptotic complexity

• Analysis: O(n) work, O(log n) span

– 2 or 3 passes, but 3 is a constant 

• Parallelized packs will help us parallelize quicksort…

18 5/19/2014

Sequential Quicksort review

Recall quicksort was sequential, in-place, expected time O(n log n)

 Best / expected case work

1. Pick a pivot element O(1)

2. Partition all the data into: O(n)

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Recurrence (assuming a good pivot):

 T(0)=T(1)=1

 T(n)=n + 2T(n/2) = O(nlogn)

Run-time: O(nlogn)

How should we parallelize this?

 5/19/2014 19

Review: Really common recurrences

Should know how to solve recurrences but also recognize some

really common ones:

 T(n) = O(1) + T(n-1) linear

 T(n) = O(1) + 2T(n/2) linear

 T(n) = O(1) + T(n/2) logarithmic

 T(n) = O(1) + 2T(n-1) exponential

 T(n) = O(n) + T(n-1) quadratic

 T(n) = O(n) + T(n/2) linear

 T(n) = O(n) + 2T(n/2) O(n log n)

Note big-Oh can also use more than one variable

• Example: can sum all elements of an n-by-m matrix in O(nm)

5/19/2014 20

Parallel Quicksort (version 1)

 Best / expected case work

1. Pick a pivot element O(1)

2. Partition all the data into: O(n)

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

First: Do the two recursive calls in parallel

• Work: unchanged of course, O(n log n)

• Span: now recurrence takes the form:

 T(n) = O(n) + 1T(n/2) = O(n)

Span: O(n)

• So parallelism (i.e., work/span) is O(log n)

5/19/2014 21

Doing better

• O(log n) speed-up with an infinite number of processors is

okay, but a bit underwhelming

– Sort 109 elements 30 times faster

• Google searches strongly suggest quicksort cannot do better

because the partition cannot be parallelized

– The Internet has been known to be wrong 

– But we need auxiliary storage (no longer in place)

– In practice, constant factors may make it not worth it, but

remember Amdahl’s Law…(exposing parallelism is

important!)

• Already have everything we need to parallelize the partition…

22 5/19/2014

Parallel partition (not in place)

• This is just two packs!

– We know a pack is O(n) work, O(log n) span

– Pack elements less than pivot into left side of aux array

– Pack elements greater than pivot into right size of aux array

– Put pivot between them and recursively sort

– With a little more cleverness, can do both packs at once but

no effect on asymptotic complexity

• With O(log n) span for partition, the total span for quicksort is

 T(n) = O(log n) + 1T(n/2) = O(log2 n)

23

 Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

5/19/2014

Parallel Quicksort Example (version 2)

• Step 1: pick pivot as median of three

24

8 1 4 9 0 3 5 2 7 6

• Steps 2a and 2c (combinable): pack less than, then pack

greater than into a second array

– Fancy parallel prefix to pull this off (not shown)

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

• Step 3: Two recursive sorts in parallel

– Can sort back into original array (like in mergesort)

5/19/2014

Parallelize Mergesort?

Recall mergesort: sequential, not-in-place, worst-case O(n log n)

25

1. Sort left half and right half 2T(n/2)

2. Merge results O(n)

Just like quicksort, doing the two recursive sorts in parallel changes

the recurrence for the Span to T(n) = O(n) + 1T(n/2) = O(n)

• Again, Work is O(nlogn), and

• parallelism is work/span = O(log n)

• To do better, need to parallelize the merge

– The trick won’t use parallel prefix this time…

5/19/2014

Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

26

0 1 4 8 9 2 3 5 6 7

Idea: Suppose the larger subarray has m elements. In parallel:

• Merge the first m/2 elements of the larger half with the

“appropriate” elements of the smaller half

• Merge the second m/2 elements of the larger half with the

rest of the smaller half

5/19/2014

Parallelizing the merge (in more detail)

Need to merge two sorted subarrays (may not have the same size)

Idea: Recursively divide subarrays in half, merge halves in parallel

Suppose the larger subarray has m elements. In parallel:

• Pick the median element of the larger array (here 6) in constant time

• In the other array, use binary search to find the first element greater

than or equal to that median (here 7)

Then, in parallel:

• Merge half the larger array (from the median onward) with the upper

part of the shorter array

• Merge the lower part of the larger array with the lower part of the

shorter array

0 4 6 8 9 1 2 3 5 7

5/19/2014 27

Example: Parallelizing the Merge

5/19/2014 28

0 4 6 8 9 1 2 3 5 7

Example: Parallelizing the Merge

5/19/2014 29

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index

Example: Parallelizing the Merge

5/19/2014 30

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value:

O(log n) to do binary search on the sorted small half

Example: Parallelizing the Merge

5/19/2014 31

1. Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value:

O(log n) to do binary search on the sorted small half

3. Size of two sub-merges conceptually splits output array: O(1)

0 4 6 8 9 1 2 3 5 7

Example: Parallelizing the Merge

5/19/2014 32

1. Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value:

O(log n) to do binary search on the sorted small half

3. Two sub-merges conceptually splits output array: O(1)

4. Do two submerges in parallel

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5
merge

6 8 9 7

merge

Example: Parallelizing the Merge

5/19/2014 33

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge
6 8 9 7

merge

0 4 1 2 3 5 6 8 9 7

0 4 1 2 3 5 9 6 8 7

merge merge merge

0 4 1 2 3 5 9 6 8 7

0 4 1 2 3 5 9 6 8 7

merge merge merge

0 4 1 2 3 5 9 6 8 7

Example: Parallelizing the Merge

5/19/2014 34

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge
6 8 9 7

merge

0 4 1 2 3 5 6 8 9 7

0 4 1 2 3 5 9 6 8 7

merge merge merge

0 4 1 2 3 5 9 6 8 7

0 4 1 2 3 5 9 6 8 7

merge merge merge

0 4 1 2 3 5 9 6 8 7

When we do each merge in parallel:

 we split the bigger array in half

 use binary search to split the smaller array

 And in base case we do the copy

Parallel Merge Pseudocode
Merge(arr[], left1, left2, right1, right2, out[], out1, out2)

 int leftSize = left2 – left1

 int rightSize = right2 – right1

 // Assert: out2 – out1 = leftSize + rightSize

 // We will assume leftSize > rightSize without loss of generality

 if (leftSize + rightSize < CUTOFF)

 sequential merge and copy into out[out1..out2]

 int mid = (left2 – left1)/2

 binarySearch arr[right1..right2] to find j such that

 arr[j] ≤ arr[mid] ≤ arr[j+1]

 Merge(arr[], left1, mid, right1, j, out[], out1, out1+mid+j)

 Merge(arr[], mid+1, left2, j+1, right2, out[], out1+mid+j+1, out2)

5/19/2014 35

Analysis

• Sequential mergesort:

T(n) = 2T(n/2) + O(n) which is O(n log n)

• Doing the two recursive calls in parallel but a sequential merge:

 Work: same as sequential

 Span: T(n)=1T(n/2)+O(n) which is O(n)

• Parallel merge makes work and span harder to compute…

– Each merge step does an extra O(log n) binary search to find

how to split the smaller subarray

– To merge n elements total, do two smaller merges of possibly

different sizes

– But worst-case split is (3/4)n and (1/4)n

• Happens when the two subarrays are of the same size (n/2)

and the “smaller” subarray splits into two pieces of the most

uneven sizes possible: one of size n/2, one of size 0

36 5/19/2014 0 4 6 8 1 2 3 5

“larger” “smaller”

Analysis continued

For just a parallel merge of n elements:

• Work is T(n) = T(3n/4) + T(n/4) + O(log n) which is O(n)

• Span is T(n) = T(3n/4) + O(log n), which is O(log2 n)

• (neither bound is immediately obvious, but “trust me”)

So for mergesort with parallel merge overall:

• Work is T(n) = 2T(n/2) + O(n), which is O(n log n)

• Span is T(n) = 1T(n/2) + O(log2 n), which is O(log3 n)

So parallelism (work / span) is O(n / log2 n)

– Not quite as good as quicksort’s O(n / log n)

• But (unlike Quicksort) this is a worst-case guarantee

– And as always this is just the asymptotic result

37 5/19/2014

