
CSE 332: Data Abstractions 
 

Lecture 19: Parallel Prefix, Pack, and Sorting 

Ruth Anderson 

Spring 2014 



Outline 

Done: 

– Simple ways to use parallelism for counting, summing, finding 

– Analysis of running time and implications of Amdahl’s Law 
 

Now:  Clever ways to parallelize more than is intuitively possible 

– Parallel prefix:  

• This “key trick” typically underlies surprising parallelization 

• Enables other things like packs (aka filters) 

– Parallel sorting: quicksort (not in place) and mergesort 

• Easy to get a little parallelism 

• With cleverness can get a lot 
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The prefix-sum problem 
Given int[] input, produce int[] output where: 
 

 output[i] = input[0]+input[1]+…+input[i] 
 

 
 

 

Sequential can be a CSE142 exam problem: 
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int[] prefix_sum(int[] input){ 
  int[] output = new int[input.length]; 
  output[0] = input[0]; 
  for(int i=1; i < input.length; i++) 
    output[i] = output[i-1]+input[i]; 
  return output; 

} 

Does not seem parallelizable 

– Work: O(n), Span: O(n) 

– This algorithm is sequential, but a different algorithm has 
Work: O(n), Span: O(log n) 

5/19/2014 

input 
output 

6 4 16 10 16 14 2 8 
6  10  26  36  52  66  68  76 



Parallel prefix-sum 

• The parallel-prefix algorithm does two passes 

– Each pass has O(n) work and O(log n) span 

– So in total there is O(n) work and O(log n) span 

– So like with array summing, parallelism is n/log n 

• An exponential speedup 
 

• First pass builds a tree bottom-up: the “up” pass 
 

• Second pass traverses the tree top-down: the “down” pass 
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Local bragging 

Historical note: 

– Original algorithm due to R. Ladner and M. Fischer at UW in 1977 

– Richard Ladner joined the UW faculty in 1971 and hasn’t left 
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1968?  1973? recent 



Parallel Prefix: The Up Pass 

We build want to build a binary tree where  
• Root has sum of the range [x,y) 

• If a node has sum of [lo,hi) and hi>lo,  

– Left child has sum of [lo,middle) 

– Right child has sum of [middle,hi)  

– A leaf has sum of [i,i+1), which is simply input[i] 

 

It is critical that we actually create the tree as we will 
need it for the down pass 
• We do not need an actual linked structure 

• We could use an array as we did with heaps 
 

Analysis of first step: Work =   Span = 
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The algorithm, part 1 

1. Propagate ‘sum’ up: Build a binary tree where  

– Root has sum of input[0]..input[n-1] 

– Each node has sum of input[lo]..input[hi-1]  

• Build up from leaves; parent.sum=left.sum+right.sum 

– A leaf’s sum is just it’s value; input[i] 
 

 

This is an easy fork-join computation: combine results by actually 

building a binary tree with all the sums of ranges 

– Tree built bottom-up in parallel 

– Could be more clever; ex. Use an array as tree representation 

like we did for heaps 
 

Analysis of first step: O(n) work, O(log n) span 
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Specifically….. 
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The (completely non-obvious) idea: 

Do an initial pass to gather 

information, enabling us to do a 

second pass to get the answer 
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the ‘sum’ for each  

recursive block 
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First pass 
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For each node, get 

the sum of all values 

in its range; 

propagate sum up 

from leaves 

Will work 

like parallel 

sum, but 

recording 

intermediate 

information 
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The algorithm, part 2 
2. Propagate ‘fromleft’ down: 

– Root given a fromLeft of 0 

– Node takes its fromLeft value and 

• Passes its left child the same fromLeft 

• Passes its right child its fromLeft plus its left child’s sum 

(as stored in part 1) 

– At the leaf for array position i, 

output[i]=fromLeft+input[i] 
 

This is an easy fork-join computation: traverse the tree built in step 1 
and produce no result (the leaves assign to output) 

– Invariant: fromLeft is sum of elements left of the node’s range 
 

Analysis of first step: O(n) work, O(log n) span  

Analysis of second step:   

Total for algorithm:   
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The algorithm, part 2 
2. Propagate ‘fromleft’ down: 

– Root given a fromLeft of 0 

– Node takes its fromLeft value and 

• Passes its left child the same fromLeft 

• Passes its right child its fromLeft plus its left child’s sum 

(as stored in part 1) 

– At the leaf for array position i, 

output[i]=fromLeft+input[i] 
 

This is an easy fork-join computation: traverse the tree built in step 1 
and produce no result (the leaves assign to output) 

– Invariant: fromLeft is sum of elements left of the node’s range 
 

Analysis of first step: O(n) work, O(log n) span  

Analysis of second step: O(n) work, O(log n) span 

Total for algorithm: O(n) work, O(log n) span 
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Second pass 
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Using ‘sum’, get the 

sum of everything to 

the left of this range 
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propagate down from 

root 

5/19/2014 13 



Sequential cut-off 

Adding a sequential cut-off isn’t too bad: 
 

• Step One: Propagating Up the sums:  

–  Have a leaf node just hold the sum of a range of values 

instead of just one array value (Sequentially compute sum 

for that range) 

–  The tree itself will be shallower 
 

• Step Two: Propagating Down the fromLefts:  

– Have leaf compute prefix sum sequentially over its [lo,hi): 

    output[lo] = fromLeft + input[lo]; 

     for(i=lo+1; i < hi; i++) 

       output[i] = output[i-1] + input[i] 
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Parallel prefix, generalized 

Just as sum-array was the simplest example of a common pattern, 

prefix-sum illustrates a pattern that arises in many, many problems 

 

• Minimum, maximum of all elements to the left of i 

 

• Is there an element to the left of i satisfying some property? 

 

• Count of elements to the left of i satisfying some property 

– This last one is perfect for an efficient parallel pack… 

– Perfect for building on top of the “parallel prefix trick” 
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Pack (think “Filter”) 

[Non-standard terminology] 

 

Given an array input, produce an array output containing only 

elements such that f(element) is true 

 

Example:  input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

        f: “is element > 10” 

        output [17, 11, 13, 19, 24] 

 

Parallelizable? 

– Determining whether an element belongs in the output is easy 

– But determining where an element belongs in the output is 

hard; seems to depend on previous results…. 
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Parallel Pack =  

parallel map + parallel prefix + parallel map 

1. Parallel map to compute a bit-vector for true elements: 

input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

bits   [1,  0, 0, 0,  1, 0,  1,  1, 0,  1] 
 

2. Parallel-prefix sum on the bit-vector: 

 bitsum [1,  1, 1, 1,  2, 2,  3,  4, 4,  5] 
 

3. Parallel map to produce the output: 

 output [17, 11, 13, 19, 24] 

  

 

 

17 

output = new array of size bitsum[n-1] 

FORALL(i=0; i < input.length; i++){ 

  if(bits[i]==1) 

    output[bitsum[i]-1] = input[i]; 

} 

5/19/2014 

In this example, 

Filter = 

element > 10 



Pack comments 

 

• First two steps can be combined into one pass 

– Just using a different base case for the prefix sum 

– No effect on asymptotic complexity 

 

• Can also combine third step into the down pass of the prefix sum 

– Again no effect on asymptotic complexity 

 

• Analysis: O(n) work, O(log n) span  

– 2 or 3 passes, but 3 is a constant  

 

• Parallelized packs will help us parallelize quicksort… 
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Sequential Quicksort review 

Recall quicksort was sequential, in-place, expected time O(n log n) 

 
          Best / expected case work 

1. Pick a pivot element        O(1) 

2. Partition all the data into:       O(n) 

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 

3. Recursively sort A and C                             2T(n/2) 

Recurrence (assuming a good pivot): 

 T(0)=T(1)=1 

 T(n)=n + 2T(n/2) = O(nlogn) 

Run-time: O(nlogn) 

 

How should we parallelize this? 
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Review: Really common recurrences 

Should know how to solve recurrences but also recognize some 

really common ones: 
 

 T(n) = O(1) + T(n-1)  linear 

 T(n) = O(1) + 2T(n/2)  linear 

 T(n) = O(1) + T(n/2)   logarithmic 

 T(n) = O(1) + 2T(n-1)  exponential 

 T(n) = O(n) + T(n-1)   quadratic  

 T(n) = O(n) + T(n/2)   linear 

 T(n) = O(n) + 2T(n/2)  O(n log n) 

 

Note big-Oh can also use more than one variable 

• Example: can sum all elements of an n-by-m matrix in O(nm) 
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Parallel Quicksort (version 1) 

         Best / expected case work 

1. Pick a pivot element        O(1) 

2. Partition all the data into:       O(n) 

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 

3. Recursively sort A and C                             2T(n/2) 

 

 

First: Do the two recursive calls in parallel 

• Work: unchanged of course, O(n log n) 

• Span: now recurrence takes the form: 

 T(n) = O(n) + 1T(n/2) = O(n) 

Span: O(n) 

• So parallelism (i.e., work/span) is O(log n) 
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Doing better 

• O(log n) speed-up with an infinite number of processors is 

okay, but a bit underwhelming 

– Sort 109 elements 30 times faster 

 

• Google searches strongly suggest quicksort cannot do better 

because the partition cannot be parallelized 

– The Internet has been known to be wrong  

– But we need auxiliary storage (no longer in place) 

– In practice, constant factors may make it not worth it, but 

remember Amdahl’s Law…(exposing parallelism is 

important!) 
 

• Already have everything we need to parallelize the partition… 
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Parallel partition (not in place) 

• This is just two packs! 

– We know a pack is O(n) work, O(log n) span 

– Pack elements less than pivot into left side of aux array  

– Pack elements greater than pivot into right size of aux array 

– Put pivot between them and recursively sort 

– With a little more cleverness, can do both packs at once but 

no effect on asymptotic complexity 
 

• With O(log n) span for partition, the total span for quicksort is

 T(n) = O(log n) + 1T(n/2) = O(log2 n) 
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 Partition all the data into:        

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 
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Parallel Quicksort Example (version 2) 

• Step 1: pick pivot as median of three 
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8 1 4 9 0 3 5 2 7 6 

• Steps 2a and 2c (combinable): pack less than, then pack 

greater than into a second array 

– Fancy parallel prefix to pull this off (not shown) 

  
1 4 0 3 5 2   

1 4 0 3 5 2 6 8 9 7 

• Step 3: Two recursive sorts in parallel 

– Can sort back into original array (like in mergesort) 
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Parallelize Mergesort? 

Recall mergesort: sequential, not-in-place, worst-case O(n log n) 

25 

       

1. Sort left half and right half      2T(n/2) 

2. Merge results       O(n) 

Just like quicksort, doing the two recursive sorts in parallel changes 

the recurrence for the Span to T(n) = O(n) + 1T(n/2) = O(n) 

• Again, Work is O(nlogn), and  

• parallelism is  work/span = O(log n) 

• To do better, need to parallelize the merge 

– The trick won’t use parallel prefix this time… 
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Parallelizing the merge 

Need to merge two sorted subarrays (may not have the same size) 
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0 1 4 8 9 2 3 5 6 7 

Idea: Suppose the larger subarray has m elements.  In parallel: 

• Merge the first m/2 elements of the larger half with the 

“appropriate” elements of the smaller half 

• Merge the second m/2 elements of the larger half with the 

rest of the smaller half 
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Parallelizing the merge (in more detail) 

Need to merge two sorted subarrays (may not have the same size) 

Idea: Recursively divide subarrays in half, merge halves in parallel 

 

 

 

Suppose the larger subarray has m elements.  In parallel: 

• Pick the median element of the larger array (here 6) in constant time 

• In the other array, use binary search to find the first element greater 

than or equal to that median (here 7) 

Then, in parallel: 

• Merge half the larger array (from the median onward) with the upper 

part of the shorter array 

• Merge the lower part of the larger array with the lower part of the 

shorter array 

0 4 6 8 9 1 2 3 5 7 
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Example: Parallelizing the Merge 
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0 4 6 8 9 1 2 3 5 7 



Example: Parallelizing the Merge 
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0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half: O(1) to compute middle index 

 

 



Example: Parallelizing the Merge 
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0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half: O(1) to compute middle index 

2. Find how to split the smaller half at the same value:  

O(log n) to do binary search on the sorted small half 

 

 

 



Example: Parallelizing the Merge 
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1. Get median of bigger half: O(1) to compute middle index 

2. Find how to split the smaller half at the same value:  

O(log n) to do binary search on the sorted small half 

3. Size of two sub-merges conceptually splits output array: O(1) 

 

 

 

 

0 4 6 8 9 1 2 3 5 7 



Example: Parallelizing the Merge 
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1. Get median of bigger half: O(1) to compute middle index 

2. Find how to split the smaller half at the same value:  

O(log n) to do binary search on the sorted small half 

3. Two sub-merges conceptually splits output array: O(1) 

4. Do two submerges in parallel 

 

 

 

0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 
merge 

6 8 9 7 

merge 



Example: Parallelizing the Merge 
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0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

merge 
6 8 9 7 

merge 

0 4 1 2 3 5 6 8 9 7 

0 4 1 2 3 5 9 6 8 7 

merge merge merge 

0 4 1 2 3 5 9 6 8 7 

0 4 1 2 3 5 9 6 8 7 

merge merge merge 

0 4 1 2 3 5 9 6 8 7 



Example: Parallelizing the Merge 
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0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

merge 
6 8 9 7 

merge 

0 4 1 2 3 5 6 8 9 7 

0 4 1 2 3 5 9 6 8 7 

merge merge merge 

0 4 1 2 3 5 9 6 8 7 

0 4 1 2 3 5 9 6 8 7 

merge merge merge 

0 4 1 2 3 5 9 6 8 7 

When we do each merge in parallel: 

 we split the bigger array in half 

 use binary search to split the smaller array 

 And in base case we do the copy 



Parallel Merge Pseudocode 
Merge(arr[], left1, left2, right1, right2, out[], out1, out2 )  

 int leftSize = left2 – left1 

 int rightSize = right2 – right1 

 // Assert: out2 – out1 = leftSize + rightSize  

 // We will assume leftSize > rightSize without loss of generality 

  

 if (leftSize + rightSize < CUTOFF)  

  sequential merge and copy into out[out1..out2] 

  

 int mid = (left2 – left1)/2 

 binarySearch arr[right1..right2] to find j such that 

  arr[j] ≤ arr[mid] ≤ arr[j+1] 

  

 Merge(arr[], left1, mid, right1, j, out[], out1, out1+mid+j)  

 Merge(arr[], mid+1, left2, j+1, right2, out[], out1+mid+j+1, out2)  
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Analysis 

• Sequential mergesort: 

T(n) = 2T(n/2) + O(n)  which is O(n log n) 
 

• Doing the two recursive calls in parallel but a sequential merge: 

  Work: same as sequential     

  Span: T(n)=1T(n/2)+O(n)  which is O(n) 
 

• Parallel merge makes work and span harder to compute… 

– Each merge step does an extra O(log n) binary search to find 

how to split the smaller subarray 

– To merge n elements total, do two smaller merges of possibly 

different sizes 

– But worst-case split is (3/4)n and (1/4)n 

• Happens when the two subarrays are of the same size (n/2) 

and the “smaller” subarray splits into two pieces of the most 

uneven sizes possible:  one of size n/2, one of size 0 
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Analysis continued 

For just a parallel merge of n elements: 

• Work is T(n) = T(3n/4) + T(n/4) + O(log n) which is O(n) 

• Span is T(n) = T(3n/4) + O(log n), which is O(log2 n) 

• (neither bound is immediately obvious, but “trust me”) 

 

So for mergesort with parallel merge overall: 

• Work is T(n) = 2T(n/2) + O(n), which is O(n log n) 

• Span is T(n) = 1T(n/2) + O(log2 n), which is O(log3 n) 

 

So parallelism (work / span) is O(n / log2 n) 

– Not quite as good as quicksort’s O(n / log n) 

• But (unlike Quicksort) this is a worst-case guarantee 

– And as always this is just the asymptotic result 
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