

CSE 332: Data Abstractions
Lecture 18: Analysis of Fork-Join Parallel Programs

Ruth Anderson

Spring 2014

Outline

Done:

- How to use fork and join to write a parallel algorithm
- Why using divide-and-conquer with lots of small tasks is best
- Combines results in parallel
- Some Java and ForkJoin Framework specifics
- More pragmatics (e.g., installation) in separate notes

Now:

- More examples of simple parallel programs
- Arrays \& balanced trees support parallelism better than linked lists
- Asymptotic analysis for fork-join parallelism
- Amdahl's Law

What else looks like this?

Saw summing an array went from $O(n)$ sequential to $O(\log n)$ parallel (assuming a lot of processors and very large n)

- Exponential speed-up in theory ($n / \log n$ grows exponentially)

- Anything that can use results from two halves and merge them in $O(1)$ time has the same property...

Extending Parallel Sum

- We can tweak the 'parallel sum' algorithm to do all kinds of things; just specify 2 parts (usually)
- Describe how to compute the result at the 'cut-off' (Sum: Iterate through sequentially and add them up)
- Describe how to merge results (Sum: Just add 'left' and 'right' results)

Examples

- Parallelization (for some algorithms)
- Describe how to compute result at the 'cut-off'
- Describe how to merge results
- How would we do the following (assuming data is given as an array)?

1. Maximum or minimum element
2. Is there an element satisfying some property (e.g., is there a 17)?
3. Left-most element satisfying some property (e.g., first 17)
4. Smallest rectangle encompassing a number of points (proj3)
5. Counts; for example, number of strings that start with a vowel
6. Are these elements in sorted order?

Reductions

- This class of computations are called reductions
- We 'reduce' a large array of data to a single item
- Produce single answer from collection via an associative operator
- Examples: max, count, leftmost, rightmost, sum, product, ...
- Note: Recursive results don't have to be single numbers or strings. They can be arrays or objects with multiple fields.
- Example: create a Histogram of test results from a much larger array of actual test results
- While many can be parallelized due to nice properties like associativity of addition, some things are inherently sequential
- How we process arr[i] may depend entirely on the result of processing arr [i-1]

Even easier: Maps (Data Parallelism)

- A map operates on each element of a collection independently to create a new collection of the same size
- No combining results
- For arrays, this is so trivial some hardware has direct support
- Canonical example: Vector addition

```
int[] vector add(int[] arr1, int[] arr2){
    assert (ar\overline{r}1.length == arr2.length);
    result = new int[arr1.length];
    FORALL(i=0; i < arr1.length; i++) {
        result[i] = arr1[i] + arr2[i];
    }
    return result;
}
```


Maps in ForkJoin Framework

```
class VecAdd extends RecursiveAction {
    int lo; int hi; int[] res; int[] arr1; int[] arr2;
    VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ ... }
    protected void compute() {
        if(hi - lo < SEQUENTIAL_CUTOFF) {
        for(int i=lo; i < hi;-i++)
            res[i] = arr1[i] + arr2[i];
        } else {
        int mid = (hi+lo)/2;
        VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
        VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
        left.fork();
        right.compute();
        left.join();
        }
    }
}
static final ForkJoinPool fjPool = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2) {
    assert (arr1.length == arr2.length);
    int[] ans = new int[arr1.length];
    fjPool.invoke (new VecAdd(0,arr.length,ans,arr1,arr2);
    return ans;
}

\section*{Maps and reductions}

Maps and reductions: the "workhorses" of parallel programming
- By far the two most important and common patterns
- Two more-advanced patterns in next lecture
- Learn to recognize when an algorithm can be written in terms of maps and reductions
- Use maps and reductions to describe (parallel) algorithms
- Programming them becomes "trivial" with a little practice
- Exactly like sequential for-loops seem second-nature

\section*{Map vs reduce in ForkJoin framework}
- In our examples:
- Reduce:
- Parallel-sum extended RecursiveTask
- Result was returned from compute()
- Map:
- Class extended was RecursiveAction
- Nothing returned from compute()
- In the above code, the 'answer' array was passed in as a parameter
- Doesn't have to be this way
- Map can use RecursiveTask to, say, return an array
- Reduce could use RecursiveAction; depending on what you're passing back via RecursiveTask, could store it as a class variable and access it via 'left' or 'right' when done

\section*{Digression: MapReduce on clusters}
- You may have heard of Google's "map/reduce"
- Or the open-source version Hadoop
- Idea: Perform maps/reduces on data using many machines
- The system takes care of distributing the data and managing fault tolerance
- You just write code to map one element and reduce elements to a combined result
- Separates how to do recursive divide-and-conquer from what computation to perform
- Old idea in higher-order functional programming transferred to large-scale distributed computing
- Complementary approach to declarative queries for databases

\section*{Trees}
- Maps and reductions work just fine on balanced trees
- Divide-and-conquer each child rather than array sub-ranges
- Correct for unbalanced trees, but won't get much speed-up
- Example: minimum element in an unsorted but balanced binary tree in \(O(\log n)\) time given enough processors
- How to do the sequential cut-off?
- Store number-of-descendants at each node (easy to maintain)
- Or could approximate it with, e.g., AVL-tree height

\section*{Linked lists}
- Can you parallelize maps or reduces over linked lists?
- Example: Increment all elements of a linked list
- Example: Sum all elements of a linked list
- Parallelism still beneficial for expensive per-element operations

- Once again, data structures matter!
- For parallelism, balanced trees generally better than lists so that we can get to all the data exponentially faster \(O(\log n)\) vs. \(O(n)\)
- Trees have the same flexibility as lists compared to arrays (in terms of say inserting an item in the middle of the list)

\section*{Analyzing algorithms}
- Like all algorithms, parallel algorithms should be:
- Correct
- Efficient
- For our algorithms so far, correctness is "obvious" so we'll focus on efficiency
- Want asymptotic bounds
- Want to analyze the algorithm without regard to a specific number of processors
- The key "magic" of the ForkJoin Framework is getting expected run-time performance asymptotically optimal for the available number of processors
- So we can analyze algorithms assuming this guarantee

\section*{Work and Span}

Let \(\mathbf{T}_{\mathbf{P}}\) be the running time if there are \(\mathbf{P}\) processors available
Two key measures of run-time:
- Work: How long it would take 1 processor \(=T_{1}\)
- Just "sequentialize" the recursive forking
- Span: How long it would take infinity processors \(=\mathbf{T}_{\infty}\)
- The hypothetical ideal for parallelization
- This is the longest "dependence chain" in the computation
- Example: \(O(\log n)\) for summing an array
- Notice in this example having \(>n / 2\) processors is no additional help
- Also called "critical path length" or "computational depth"

\section*{The DAG}
- A program execution using fork and join can be seen as a DAG
- Nodes: Pieces of work
- Edges: Source must finish before destination starts
- A fork "ends a node" and makes two outgoing edges
- New thread
- Continuation of current thread
- A join "ends a node" and makes a node with two incoming edges
- Node just ended
- Last node of thread joined on

\section*{Our simple examples}
- fork and join are very flexible, but divide-and-conquer maps and reductions use them in a very basic way:
- A tree on top of an upside-down tree


\section*{Our simple examples, in more detail}

Our fork and join frequently look like this:


In this context, the span ( \(\mathrm{T}_{\infty}\) ) is:
-The longest dependence-chain; longest 'branch' in parallel 'tree'
-Example: \(O(\log n)\) for summing an array; we halve the data down to our cut-off, then add back together; \(O(\log n)\) steps, \(O(1)\) time for each
-Also called "critical path length" or "computational depth"

\section*{More interesting DAGs?}
- The DAGs are not always this simple
- Example:
- Suppose combining two results might be expensive enough that we want to parallelize each one
- Then each node in the inverted tree on the previous slide would itself expand into another set of nodes for that parallel computation

\section*{Connecting to performance}
- Recall: \(\mathbf{T}_{\mathbf{P}}=\) running time if there are \(\mathbf{P}\) processors available
- Work \(=\mathbf{T}_{1}=\) sum of run-time of all nodes in the DAG
- That lonely processor does everything
- Any topological sort is a legal execution
- O(n) for simple maps and reductions
- \(\operatorname{Span}=\mathbf{T}_{\infty}=\) sum of run-time of all nodes on the most-expensive path in the DAG
- Note: costs are on the nodes not the edges
- Our infinite army can do everything that is ready to be done, but still has to wait for earlier results
- O(log \(n\) ) for simple maps and reductions

\section*{Definitions}

A couple more terms:
- Speed-up on \(\mathbf{P}\) processors: \(\mathbf{T}_{1} / \mathbf{T}_{\mathbf{P}}\)
- If speed-up is \(\mathbf{P}\) as we vary \(\mathbf{P}\), we call it perfect linear speed-up
- Perfect linear speed-up means doubling \(\mathbf{P}\) halves running time
- Usually our goal; hard to get in practice
- Parallelism is the maximum possible speed-up: \(\mathbf{T}_{1} / \mathbf{T}_{\infty}\)
- At some point, adding processors won't help
- What that point is depends on the span

> Parallel algorithms is about decreasing span without increasing work too much

\section*{Optimal \(T_{P}\) : Thanks ForkJoin library!}
- So we know \(\mathbf{T}_{1}\) and \(\mathbf{T}_{\infty}\) but we want \(\mathbf{T}_{\mathbf{P}}\) (e.g., \(\mathbf{P}=4\) )
- Ignoring memory-hierarchy issues (caching), \(\mathbf{T}_{\mathbf{P}}\) can't beat
\(-T_{1} / P\) why not?
\(-\mathbf{T}_{\infty} \quad\) why not?
- So an asymptotically optimal execution would be:
\[
T_{P}=O\left(\left(T_{1} / P\right)+T_{\infty}\right)
\]
- First term dominates for small \(\mathbf{P}\), second for large \(\mathbf{P}\)
- The ForkJoin Framework gives an expected-time guarantee of asymptotically optimal!
- Expected time because it flips coins when scheduling
- How? For an advanced course (few need to know)
- Guarantee requires a few assumptions about your code...

\section*{Division of responsibility}
- Our job as ForkJoin Framework users:
- Pick a good algorithm, write a program
- When run, program creates a DAG of things to do
- Make all the nodes a small-ish and approximately equal amount of work
- The framework-writer's job:
- Assign work to available processors to avoid idling
- Let framework-user ignore all scheduling issues
- Keep constant factors low
- Give the expected-time optimal guarantee assuming framework-user did his/her job
\[
T_{P}=O\left(\left(T_{1} / P\right)+T_{\infty}\right)
\]

\section*{Examples}
\[
T_{P}=O\left(\left(T_{1} / P\right)+T_{\infty}\right)
\]
- In the algorithms seen so far (e.g., sum an array):
\(-\mathrm{T}_{1}=O(n)\)
- \(\mathbf{T}_{\infty}=O(\log n)\)
- So expect (ignoring overheads): \(\mathbf{T}_{\mathbf{P}} \mathbf{= O}(n / \mathbf{P}+\log n)\)
- Suppose instead:
- \(\mathbf{T}_{1}=O\left(n^{2}\right)\)
- \(\mathbf{T}_{\infty}=O(n)\)
- So expect (ignoring overheads): \(\mathbf{T}_{\mathbf{P}}=\mathbf{O}\left(n^{2} / \mathbf{P}+n\right)\)

\section*{Amdahl's Law (mostly bad news)}
- So far: talked about a parallel program in terms of work and span
- In practice, it's common that your program has:
a) parts that parallelize well:
- Such as maps/reduces over arrays and trees
b) ...and parts that don't parallelize at all:
- Such as reading a linked list, getting input, or just doing computations where each step needs the results of previous step
- These unparallelized parts can turn out to be a big bottleneck

\section*{Amdahl's Law (mostly bad news)}

Let the work (time to run on 1 processor) be 1 unit time
Let \(\mathbf{S}\) be the portion of the execution that can't be parallelized
Then:
\[
T_{1}=S+(1-S)=1
\]

Suppose we get perfect linear speedup on the parallel portion
Then:
\[
T_{P}=S+(1-S) / P
\]

So the overall speedup with \(\mathbf{P}\) processors is (Amdahl's Law):
\[
T_{1} / T_{P}=1 /(S+(1-S) / P)
\]

And the parallelism (infinite processors) is:
\[
T_{1} / T_{\infty}=1 / S
\]

\section*{Why such bad news?}
\[
T_{1} / T_{P}=1 /(S+(1-S) / P) \quad T_{1} / T_{\infty}=1 / S
\]
- Suppose \(33 \%\) of a program is sequential
- Then a billion processors won't give a speedup over 3!!!
- No matter how many processors you use, your speedup is bounded by the sequential portion of the program.

\section*{Amdahl's Law Example}

Suppose: \(\quad T_{1}=\mathbf{S + ( 1 - S ) = 1}\) (aka total program execution time)
\[
T_{1}=1 / 3+2 / 3=1
\]
\(\mathrm{T}_{1}=33 \mathrm{sec}+67 \mathrm{sec}=100 \mathrm{sec}\)

Time on P processors: \(\mathbf{T}_{\mathbf{P}}=\mathbf{S + ( 1 - S ) / \mathbf { P }}\)

So: \(\quad T_{P}=33 \mathrm{sec}+(67 \mathrm{sec}) / \mathrm{P}\) \(\mathrm{T}_{3}=33 \mathrm{sec}+(67 \mathrm{sec}) / 3=\)

\section*{The future and Amdahl's Law}

Speedup:
Max Parallelism:
\[
\begin{aligned}
& T_{1} / T_{P}=1 /(S+(1-S) / P) \\
& T_{1} / T_{\infty}=1 / S
\end{aligned}
\]
- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
- Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
- What portion of the program must be parallelizable to get 100x speedup?

\section*{The future and Amdahl's Law}

Speedup:
Max Parallelism:
\[
\begin{aligned}
& T_{1} / T_{P}=1 /(S+(1-S) / P) \\
& T_{1} / T_{\infty}=1 / S
\end{aligned}
\]
- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
- Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
- What portion of the program must be parallelizable to get 100x speedup?

For 256 processors to get at least 100x speedup, we need
\[
100 \leq 1 /(\mathbf{S}+(1-\mathbf{S}) / 256)
\]

Which means \(\mathrm{S} \leq .0061\) (i.e., \(99.4 \%\) must be parallelizable)

\section*{Plots you have to see}
1. Assume 256 processors
- x-axis: sequential portion \(\mathbf{S}\), ranging from .01 to .25
- \(y\)-axis: speedup \(\mathbf{T}_{1} / \mathbf{T}_{\mathrm{P}}\) (will go down as \(\mathbf{S}\) increases)
2. Assume \(\mathbf{S}=.01\) or .1 or .25 (three separate lines)
- x-axis: number of processors \(\mathbf{P}\), ranging from 2 to 32
- \(y\)-axis: speedup \(\mathbf{T}_{1} / \mathbf{T}_{\mathbf{P}}\) (will go up as \(\mathbf{P}\) increases)

Do this as a homework problem!
- Chance to use a spreadsheet or other graphing program
- Compare against your intuition
- A picture is worth 1000 words, especially if you made it

\section*{All is not lost}

Amdahl's Law is a bummer!
- Unparallelized parts become a bottleneck very quickly
- But it doesn't mean additional processors are worthless
- We can find new parallel algorithms
- Some things that seem entirely sequential turn out to be parallelizable
- Eg. How can we parallelize the following?
- Take an array of numbers, return the 'running sum' array:
\begin{tabular}{c|c|c|c|c|c|c|c|c|} 
input & 6 & 4 & 16 & 10 & 16 & 14 & 2 & 8 \\
\cline { 2 - 9 } & 6 \\
output & 6 & 10 & 26 & 36 & 52 & 66 & 68 & 76 \\
\cline { 2 - 8 } & &
\end{tabular}
- At a glance, not sure; we'll explore this shortly
- We can also change the problem we're solving or do new things
- Example: Video games use tons of parallel processors
- They are not rendering 10-year-old graphics faster
- They are rendering richer environments and more beautiful (terrible?) monsters

\section*{Moore and Amdahl}

- Moore's "Law" is an observation about the progress of the semiconductor industry
- Transistor density doubles roughly every 18 months
- Amdahl's Law is a mathematical theorem
- Diminishing returns of adding more processors
- Both are incredibly important in designing computer systems```

