

CSE 332: Data Abstractions

Lecture 13: Beyond Comparison Sorting

Ruth Anderson
Spring 2014

Today

- Sorting
- Comparison sorting
- Beyond comparison sorting

The Big Picture

Simple algorithms: $\mathrm{O}\left(\mathrm{n}^{2}\right)$	Fancier algorithms: $\mathbf{O}(n \log n)$	Comparison lower bound: $\Omega(n \log n)$
Insertion sort	Heap sort	
Selection sort	Merge sort	
Shell sort	Quick sort (avg)	
.	...	

Bucket sort
Radix sort

Handling huge data sets

External sorting

How fast can we sort?

- Heapsort \& mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$
- Instead: prove that this is impossible
- Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

A Different View of Sorting

- Assume we have n elements to sort
- And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, $n=3$,

A Different View of Sorting

- Assume we have n elements to sort
- And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, $n=3$, six possibilities

$$
\begin{array}{lll}
a[0]<a[1]<a[2] & a[0]<a[2]<a[1] & a[1]<a[0]<a[2] \\
a[1]<a[2]<a[0] & a[2]<a[0]<a[1] & a[2]<a[1]<a[0]
\end{array}
$$

- In general, n choices for least element, then n - 1 for next, then $n-2$ for next, ...
- $n(n-1)(n-2) \ldots(2)(1)=n!$ possible orderings

Describing every comparison sort

- A different way of thinking of sorting is that the sorting algorithm has to "find" the right answer among the n ! possible answers
- Starts "knowing nothing", "anything is possible"
- Gains information with each comparison, eliminating some possiblities
- Intuition: At best, each comparison can eliminate half of the remaining possibilities
- In the end narrows down to a single possibility

Counting Comparisons

- Don't know what the algorithm is, but it cannot make progress without doing comparisons
- Eventually does a first comparison "is $a<b$?"
- Can use the result to decide what second comparison to do
- Etc.: comparison k can be chosen based on first $k-1$ results
- Can represent this process as a decision tree
- Nodes contain "set of remaining possibilities"
- At root, anything is possible; no option eliminated
- Edges are "answers from a comparison"
- The algorithm does not actually build the tree; it's what our proof uses to represent "the most the algorithm could know so far" as the algorithm progresses

One Decision Tree for $n=3$

- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree

Example if $a<c<b$

What the decision tree tells us

- A binary tree because each comparison has 2 outcomes
- Perform only comparisons between 2 elements; binary result
- Ex: Is a<b? Yes or no?
- We assume no duplicate elements
- Assume algorithm doesn't ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to produce all n ! answers
- Each answer is a different leaf
- So the tree must be big enough to have n ! leaves
- Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with n ! leaves
- So no algorithm can have worst-case running time better than the height of a tree with n ! leaves
- Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm's decision tree

Where are we

Proven: No comparison sort can have worst-case running time better than: the height of a binary tree with n ! leaves

- Turns out average-case is same asymptotically
- A comparison sort could be worse than this height, but it cannot be better
- Fine, how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n ! leaves has height $\Omega(n \log n)$

- That is, $\mathrm{n} \log \mathrm{n}$ is the lower bound, the height must be at least this, could be more, (in other words your comparison sorting algorithm could take longer than this, but it won't be faster)
- Factorial function grows very quickly

Then we'll conclude that: (Comparison) Sorting is $\Omega(n \log n$)

- This is an amazing computer-science result: proves all the clever programming in the world can't sort in linear time!

Lower bound on Height

- A binary tree of height h has at most how many leaves?
L \leq
- A binary tree with L leaves has height at least: h \geq
- The decision tree has how many leaves:
- So the decision tree has height:
h \geq

Lower bound on height

- The height of a binary tree with L leaves is at least $\log _{2} L$
- So the height of our decision tree, h :

$$
\begin{array}{rlrl}
h & \geq \log _{2}(n!) & & \text { property of binary trees } \\
& =\log _{2}\left(n^{*}(n-1)^{*}(n-2) \ldots(2)(1)\right) & & \text { definition of factorial } \\
& =\log _{2} n+\log _{2}(n-1)+\ldots+\log _{2} 1 & & \text { property of logarithms } \\
& \geq \log _{2} n+\log _{2}(n-1)+\ldots+\log _{2}(n / 2) & & \text { keep first } n / 2 \text { terms } \\
& \geq(n / 2) \log _{2}(n / 2) & \text { each of the } n / 2 \text { terms left is } \geq \log _{2}(n / 2) \\
& =(n / 2)\left(\log _{2} n-\log _{2} 2\right) & & \text { property of logarithms } \\
& =(1 / 2) n \log _{2} n-(1 / 2) n & & \text { arithmetic } \\
& \text { "" } \Omega(n \log n) & &
\end{array}
$$

The Big Picture

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
- Create an array of size K, and put each element in its proper bucket (a.ka. bin)
- If data is only integers, no need to store more than a count of how many times that bucket has been used
- Output result via linear pass through array of buckets

count array	
1	
2	
3	
4	
5	

- Example:

K=5
Input: (5, 1,3,4,3,2,1,1,5,4,5)
output:

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
- Create an array of size K, and put each element in its proper bucket (a.ka. bin)
- If data is only integers, no need to store more than a count of how many times that bucket has been used
- Output result via linear pass through array of buckets

count array	
1	3
2	1
3	2
4	2
5	3

- Example:

$$
K=5
$$

input ($5,1,3,4,3,2,1,1,5,4,5$)
output: 1,1,1,2,3,3,4,4,5,5,5

What is the running time?

Analyzing bucket sort

- Overall: $O(n+K)$
- Linear in n, but also linear in K
- $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when range, K, is smaller (or not much larger) than n
- (We don't spend time doing lots of comparisons of duplicates!)
- Bad when K is much larger than n
- Wasted space; wasted time during final linear $O(K)$ pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

- Most real lists aren't just \#'s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end $O(1)$ (keep pointer to last element)

count array			
1			
:---			
	Rocky \mathbf{V}		

- Example: Movie ratings: 1=bad,...5=excellent
- Input=

5: Casablanca
3: Harry Potter movies
1: Rocky V
5: Star Wars

Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
This result is stable; Casablanca still before Star Wars

Radix sort

- Radix = "the base of a number system"
- Examples will use 10 because we are used to that
- In implementations use larger numbers
- For example, for ASCII strings, might use 128
- Idea:
- Bucket sort on one digit at a time
- Number of buckets = radix
- Starting with least significant digit, sort with Bucket Sort
- Keeping sort stable
- Do one pass per digit
- Invariant: After k passes, the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Example

Radix $=10$

0	1	2	3	4	5	6	7	8	9
	721		3				537	478	9
			143				67	38	

Input: 478
537 9
721
3
38
143
67

First pass:

1. bucket sort by ones digit
2. Iterate thru and collect into a list

- List is sorted by first digit

Student Activity

RadixSort

- Input:126, 328, 636, 341, 416, 131, 328

BucketSort on Isd:

0	1	2	3	4	5	6	7	8	9

BucketSort on next-higher digit:

0	1	2	3	4	5	6	7	8	9

BucketSort on msd:

0	1	2	3	4	5	6	7	8	9
$4 / 28 / 2014$									

Analysis of Radix Sort

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
- e.g. Base 10 \#: 10; binary \#: 2; Alpha-numeric char: 62
- Number of passes = "Digits": P
- e.g. Ages of people: 3; Phone \#: 10; Person's name: ?
- Work per pass is 1 bucket sort:
- Each pass is a Bucket Sort
- Total work is \qquad
- We do 'P' passes, each of which is a Bucket Sort

Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
- Approximate run-time: $15^{*}(52+n)$
- This is less than n log n only if $n>33,000$
- Of course, cross-over point depends on constant factors of the implementations plus P and B
- And radix sort can have poor locality properties
- Not really practical for many classes of keys
- Strings: Lots of buckets

Recap: Features of Sorting Algorithms

In-place

- Sorted items occupy the same space as the original items. (No copying required, only $\mathrm{O}(1)$ extra space if any.)

Stable

- Items in input with the same value end up in the same order as when they began.

Examples:

- Merge Sort - not in place, stable
- Quick Sort - in place, not stable

Sorting massive data: External Sorting

Need sorting algorithms that minimize disk/tape access time:

- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access

Basic Idea:

- Load chunk of data into Memory, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Mergesort can leverage multiple disks
- Weiss gives some examples

Sorting Summary

- Simple $O\left(n^{2}\right)$ sorts can be fastest for small n
- selection sort, insertion sort (latter linear for mostly-sorted)
- good for "below a cut-off" to help divide-and-conquer sorts
- $O(n \log n)$ sorts
- heap sort, in-place but not stable nor parallelizable
- merge sort, not in place but stable and works as external sort
- quick sort, in place but not stable and $O\left(n^{2}\right)$ in worst-case
- often fastest, but depends on costs of comparisons/copies
- $\Omega(n \log n)$ is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
- Bucket sort good for small number of key values
- Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!

