

CSE 332: Data Abstractions Lecture 11:More Hashing

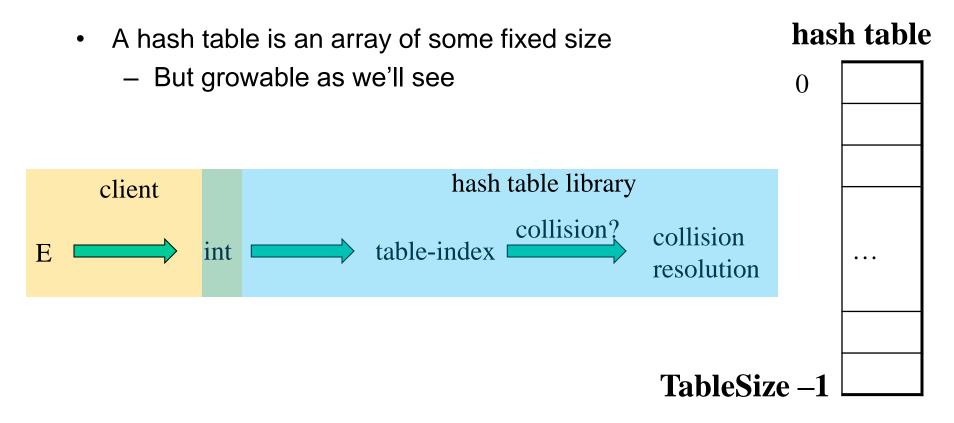
Ruth Anderson Spring 2014

Today

- Dictionaries
 - Hashing

Hash Tables: Review

Aim for constant-time (i.e., O(1)) find, insert, and delete
 "On average" under some reasonable assumptions



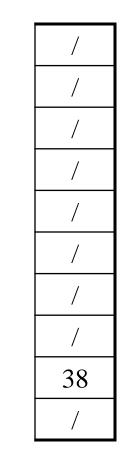
Hashing Choices

- 1. Choose a Hash function
- 2. Choose TableSize
- 3. Choose a Collision Resolution Strategy from these:
 - Separate Chaining
 - Open Addressing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
- Other issues to consider:
 - Deletion?
 - What to do when the hash table gets "too full"?

- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If h (key) is already full,

- try (h(key) + 1) % TableSize. If full,

- try (h(key) + 2) % TableSize. If full,
- try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10



0

1

2

3

4

5

6

7

8

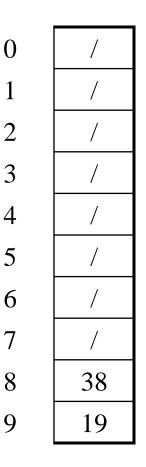
Another simple idea: If **h** (**key**) is already full, •

- try (h(key) + 1) % TableSize. If full,

- try (h(key) + 2) % TableSize. If full,

- try (h(key) + 3) % TableSize. If full...

Example: insert 38, 19, 8, 109, 10 •



0

1

3

4

5

6

7

8

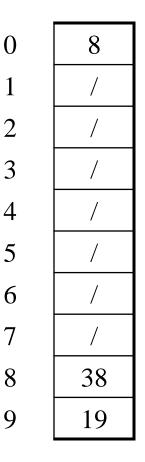
Another simple idea: If **h** (**key**) is already full, •

- try (h(key) + 1) % TableSize. If full,

- try (h(key) + 2) % TableSize. If full,

- try (h(key) + 3) % TableSize. If full...

Example: insert 38, 19, 8, 109, 10 •



0

1

3

4

5

6

7

8

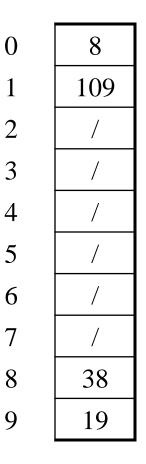
Another simple idea: If **h** (**key**) is already full, •

- try (h(key) + 1) % TableSize. If full,

- try (h(key) + 2) % TableSize. If full,

- try (h(key) + 3) % TableSize. If full...

Example: insert 38, 19, 8, 109, 10 •



1

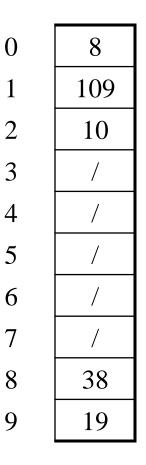
• Another simple idea: If h (key) is already full,

- try (h(key) + 1) % TableSize. If full,

- try (h(key) + 2) % TableSize. If full,

- try (h(key) + 3) % TableSize. If full...

• Example: insert 38, 19, 8, 109, 10



Open addressing

Linear probing is one example of open addressing

In general, open addressing means resolving collisions by trying a sequence of other positions in the table.

Trying the *next* spot is called probing

- We just did linear probing:
 - ith probe: (h(key) + i) % TableSize
- In general have some probe function **f** and :
 - ith probe: (h(key) + f(i)) % TableSize

Open addressing does poorly with high load factor λ

- So want larger tables
- Too many probes means no more O(1)

Terminology

We and the book use the terms

- "chaining" or "separate chaining"
- "open addressing"

Very confusingly,

- "open hashing" is a synonym for "chaining"
- "closed hashing" is a synonym for "open addressing"

What about **find**? If value is in table? If not there? Worst case?

What about **delete**?

How does open addressing with linear probing compare to separate chaining?

Open Addressing: Other Operations

insert finds an open table position using a probe function

What about **find**?

- Must use same probe function to "retrace the trail" for the data
- Unsuccessful search when reach empty position

What about **delete**?

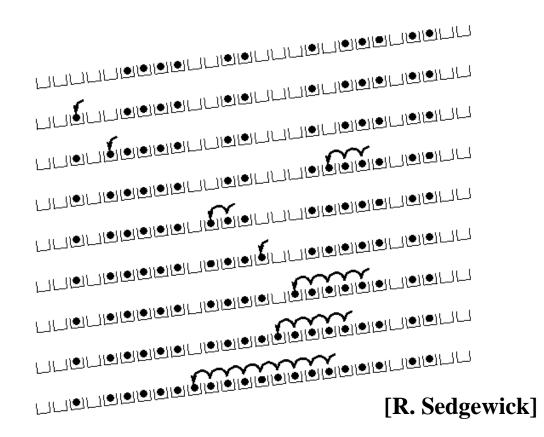
- *Must* use "lazy" deletion. Why?
 - Marker indicates "no data here, but don't stop probing"

- Note: **delete** with chaining is plain-old list-remove

Primary Clustering

It turns out linear probing is a *bad idea*, even though the probe function is quick to compute (a good thing)

- Tends to produce clusters, which lead to long probe sequences
- Called primary clustering
- Saw the start of a cluster in our linear probing example



Analysis of Linear Probing

- Trivial fact: For any λ < 1, linear probing will find an empty slot
 It is "safe" in this sense: no infinite loop unless table is full
- Non-trivial facts we won't prove: Average # of probes given λ (in the limit as TableSize $\rightarrow \infty$)

Unsuccessful search:
$$\frac{1}{2} \left(1 + \frac{1}{\left(1 - \lambda\right)^2} \right)$$

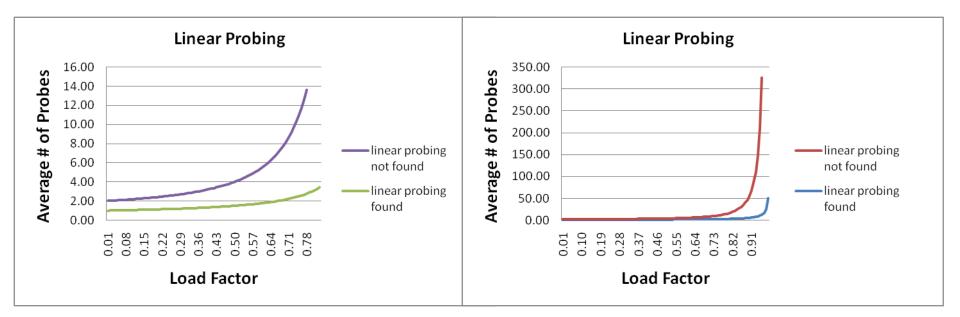
- Successful search:
$$\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)} \right)$$

• This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)

4/23/2014

Analysis in chart form

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes "large table" but point remains)



• By comparison, separate chaining performance is linear in λ and has no trouble with $\lambda > 1$

(h(key) + f(i)) % TableSize

– For linear probing:

f(i) = i

- So probe sequence is:
 - Oth probe: h(key) % TableSize
 - 1st probe: (h(key) + 1) % TableSize
 - 2nd probe: (h(key) + 2) % TableSize
 - 3rd probe: (h(key) + 3) % TableSize
 - ...
 - ith probe: (h(key) + i) % TableSize

Open Addressing: Quadratic probing

• We can avoid primary clustering by changing the probe function...

(h(key) + f(i)) % TableSize

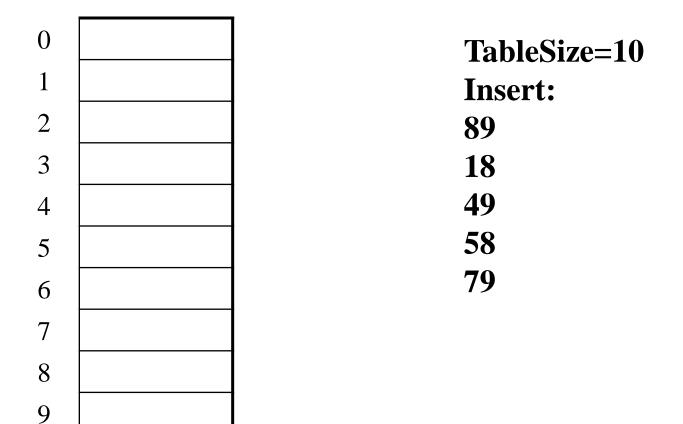
– For quadratic probing:

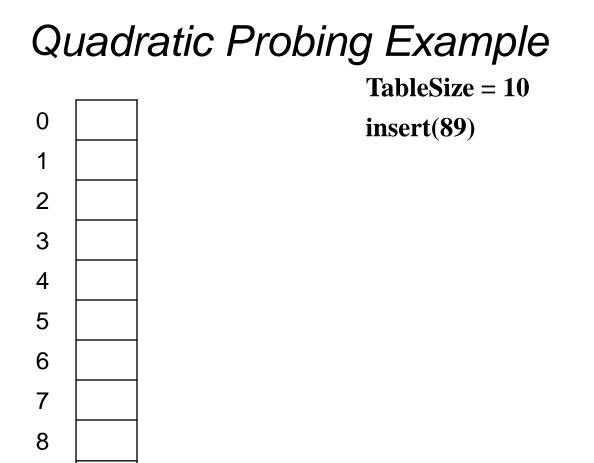
 $f(i) = i^2$

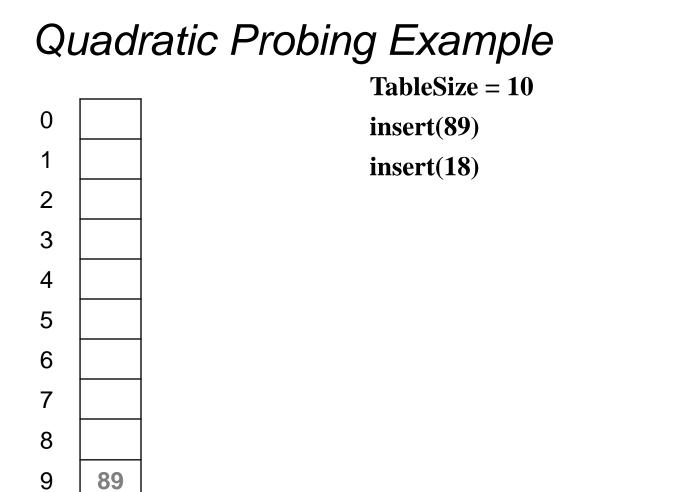
- So probe sequence is:
 - Oth probe: h(key) % TableSize
 - 1st probe: (h(key) + 1) % TableSize
 - 2nd probe: (h(key) + 4) % TableSize
 - 3rd probe: (h(key) + 9) % TableSize
 - ...
 - ith probe: (h(key) + i²) % TableSize
- Intuition: Probes quickly "leave the neighborhood"

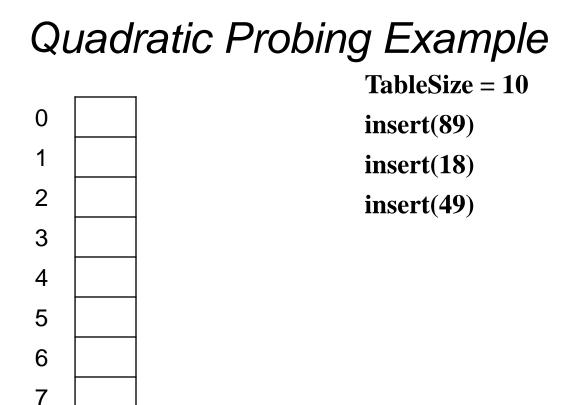
4/23/2014

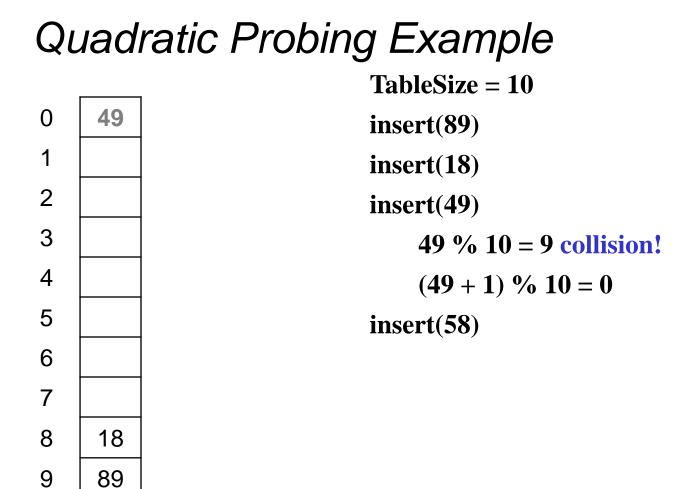
ith probe: (h (key) + i²) % TableSize Quadratic Probing Example

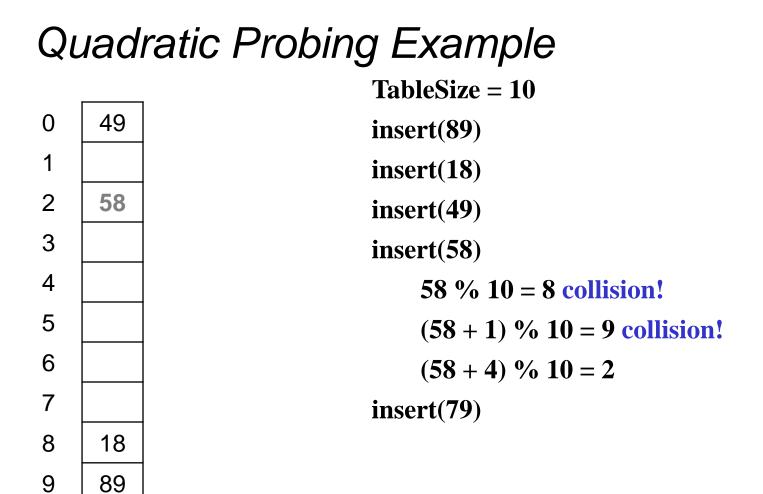


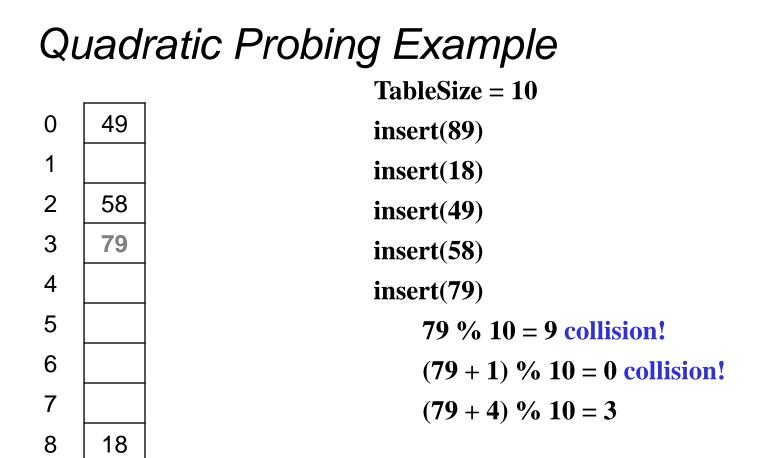




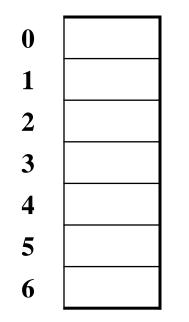








Another Quadratic Probing Example

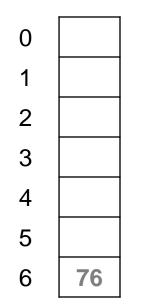


TableSize =

Insert:

(76	% '	7 =	6)
(40	% ′	7 =	5)
(48	% 7	7 =	6)
(5	%	7 =	5)
(55	%	7 =	6)
(47	% 7	7 =	5)

Another Quadratic Probing Example



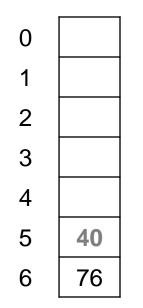
TableSize = 7

Insert:

76	(76 % 7 = 6)
40	(40 % 7 = 5)

- **48** (**48** % **7** = **6**)
 - **5** (**5** % **7** = **5**)
- 55 (55 % 7 = 6)
 - **47** (**47** % **7** = **5**)

Another Quadratic Probing Example



TableSize = 7

Insert:

76	(76 % 7 = 6)
40	(40 % 7 = 5)

- $48 \qquad (48 \% 7 = 6)$
 - **5** (**5** % **7** = **5**)
- 55 (55 % 7 = 6)
 - **47** (**47** % **7** = **5**)

Another Quadratic Probing Example

 TableSize = 7

Insert:

76	(76 % 7 = 6)
40	(40 % 7 = 5)

- **48** (**48** % **7** = **6**)
 - **5** (**5** % **7** = **5**)
- 55 (55 % 7 = 6)
 - **47** (**47** % **7** = **5**)

Another Quadratic Probing Example

 TableSize = 7Insert:76(76 % 7 = 6)40(40 % 7 = 5)48(48 % 7 = 6)5(5 % 7 = 5)55(55 % 7 = 6)

47 (**47** % **7** = **5**)

Another Quadratic Probing Example

TableSize = 7Insert:76(76 % 7 = 6)40(40 % 7 = 5)48(48 % 7 = 6)

- 5
 (5 % 7 = 5)

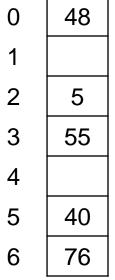
 55
 (55 % 7 = 6)
- $47 \qquad (47 \% 7 = 5)$

Another Quadratic Probing Example

Will we ever get a 1 or 4?!?

Tab	oleSize = 7
Ins	ert:
76	(76 % 7 = 6)
40	(40 % 7 = 5)
48	(48 % 7 = 6)
5	(5 % 7 = 5)
55	(55 % 7 = 6)
47	(47 % 7 = 5)
	(47 + 1) % 7 = 6 collision!
	(47 + 4) % 7 = 2 collision!
	(47 + 9) % 7 = 0 collision!
	(47 + 16) % 7 = 0 collision!
	(47 + 25) % 7 = 2 collision!

Another Quadratic Probing Example insert(47) will always fail here. Why?



For all *i*, (5 + i²) % 7 is 0, 2, 5, or 6

Proof uses induction and

$$(5 + i^2) \% 7 = (5 + (i - 7)^2) \% 7$$

In fact, for all *c* and *k*,

$$(c + i^2) \% k = (c + (i - k)^2) \% k$$

From bad news to good news

Bad News:

After TableSize quadratic probes, we cycle through the same indices

Good News:

- If TableSize is prime and λ < ½, then quadratic probing will find an empty slot in at most TableSize/2 probes
- So: If you keep λ < ½ and TableSize is prime, no need to detect cycles
- Proof posted in lecture11.txt (slightly less detailed proof in textbook)

- For prime T and $0 \le i, j \le T/2$ where $i \ne j$,

 $(h(key) + i^2)$ % T \neq $(h(key) + j^2)$ % T

That is, if T is prime, the first T/2 quadratic probes map to different locations

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

• If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.

- show for all $0 \le i,j \le size/2$ and $i \ne j$

 $(h(x) + i^2) \mod size \neq (h(x) + j^2) \mod size$

- by contradiction: suppose that for some $i \neq j$:

 $(h(x) + i^2) \mod size = (h(x) + j^2) \mod size$

 \Rightarrow i² mod size = j² mod size

 \Rightarrow (i² - j²) mod size = 0

 \Rightarrow [(i + j)(i - j)] mod size = 0

BUT size does not divide (i-j) or (i+j)

How can i+j = 0 or i+j = size when: $i \neq j$ and $0 \leq i, j \leq size/2$? Similarly how can i-j = 0 or i-j = size ?

Clustering reconsidered

- Quadratic probing does not suffer from primary clustering: No problem if keys initially hash to the same *neighborhood*
- But it's no help if keys initially hash to the same **index**
 - Any 2 keys that hash to the same value will have the same series of moves after that
 - Called secondary clustering
- Can avoid secondary clustering with a probe function that depends on the key: double hashing...

Open Addressing: Double hashing

Idea: Given two good hash functions h and g, it is very unlikely that for some key, h(key) == g(key)

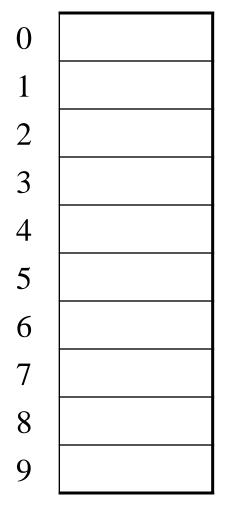
(h(key) + f(i)) % TableSize

- For double hashing:

f(i) = i*g(key)

- So probe sequence is:
 - Oth probe: h(key) % TableSize
 - 1st probe: (h(key) + g(key)) % TableSize
 - 2nd probe: (h(key) + 2*g(key)) % TableSize
 - 3rd probe: (h(key) + 3*g(key)) % TableSize
 - ...
 - ith probe: (h(key) + i*g(key)) % TableSize
- Detail: Make sure g(key) can't be 0

ith probe: (h (key) + i*g(key)) % TableSize Open Addressing: Double Hashing



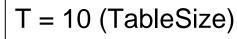
T = 10 (TableSize) $\underline{\text{Hash Functions}}$ h(key) = key mod T g(key) = 1 + ((key/T) mod (T-1))

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

28

33 147

43

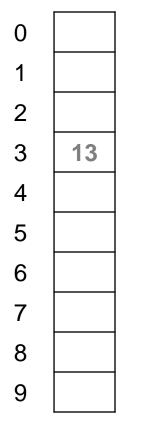


Hash Functions:

h(key) = key mod T

 $g(key) = 1 + ((key/T) \mod (T-1))$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:



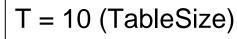
13

28

33

147

43

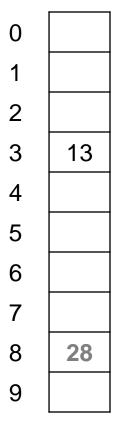


Hash Functions:

h(key) = key mod T

 $g(key) = 1 + ((key/T) \mod (T-1))$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:



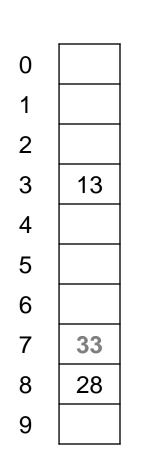
13

28

33

147

43



T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

$$g(key) = 1 + ((key/T) \mod (T-1))$$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

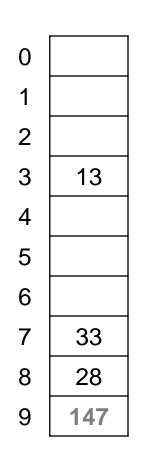
13

28

147

43

 $33 \rightarrow g(33) = 1 + 3 \mod 9 = 4$



T = 10 (TableSize)

Hash Functions:

 $h(key) = key \mod T$

$$g(key) = 1 + ((key/T) \mod (T-1))$$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

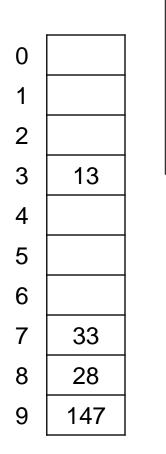
13

28

43

33

147 \rightarrow g(147) = 1 + 14 mod 9 = 6



T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

$$g(key) = 1 + ((key/T) \mod (T-1))$$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

28

33

3

- 147 \rightarrow g(147) = 1 + 14 mod 9 = 6
- 43 \rightarrow g(43) = 1 + 4 mod 9 = 5

We have a problem:

$$+ 0 = 3 3 + 5 = 8 3 + 10 = 13 \\ 3 + 15 = 18 3 + 20 = 23$$

Double-hashing analysis

 Intuition: Since each probe is "jumping" by g(key) each time, we "leave the neighborhood" and "go different places from other initial collisions"

But, as in quadratic probing, we could still have a problem where we are not "safe" due to an infinite loop despite room in table

- It is known that this cannot happen in at least one case:

For primes p and q such that 2 < q < p

h(key) = key % pg(key) = q - (key % q)

More double-hashing facts

- Assume "uniform hashing"
 - Means probability of g(key1) % p == g(key2) % p is 1/p
- Non-trivial facts we won't prove:
 Average # of probes given λ (in the limit as TableSize →∞)
 - Unsuccessful search (intuitive): 1

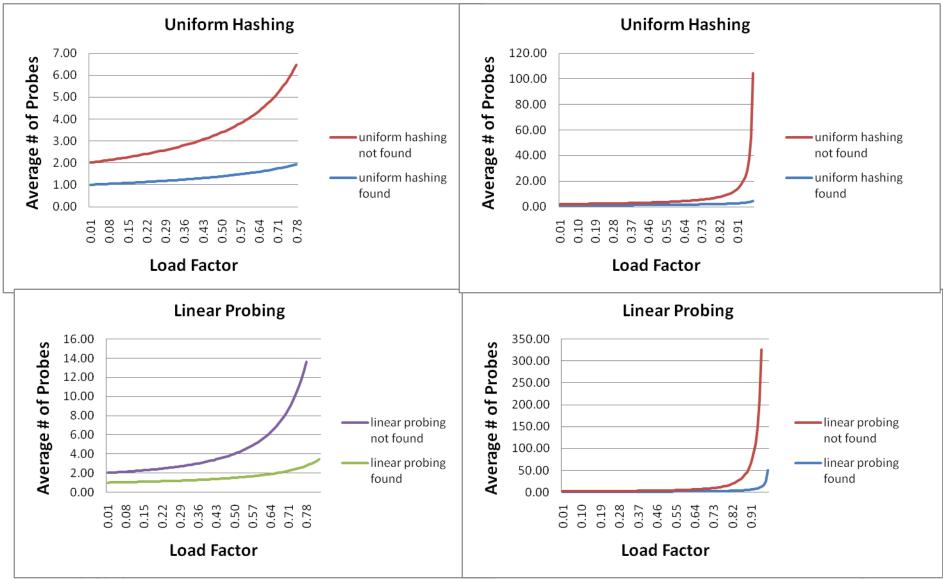
$$\overline{1-\lambda}$$

Successful search (less intuitive):

$$\frac{1}{\lambda} \log_e \left(\frac{1}{1 - \lambda} \right)$$

• Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad

Charts



Where are we?

- <u>Separate Chaining</u> is easy
 - find, delete proportional to load factor on average
 - insert can be constant if just push on front of list
- <u>Open addressing</u> uses probing, has clustering issues as table fills Why use it:
 - Less memory allocation?
 - Some run-time overhead for allocating linked list (or whatever) nodes; open addressing could be faster
 - Easier data representation?
- Now:
 - Growing the table when it gets too full (aka "rehashing")
 - Relation between hashing/comparing and connection to Java

Rehashing

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything over
- With **separate chaining**, we get to decide what "too full" means
 - Keep load factor reasonable (e.g., < 1)?</p>
 - Consider average or max size of non-empty chains?
- For **open addressing**, half-full is a good rule of thumb
- New table size
 - Twice-as-big is a good idea, except, uhm, that won't be prime!
 - So go *about* twice-as-big
 - Can have a list of prime numbers in your code since you probably won't grow more than 20-30 times, and then calculate after that

More on rehashing

- What if we copy all data to the same indices in the new table?
 Will not work; we calculated the index based on TableSize
- Go through table, do standard insert for each into new table
 - Iterate over old table: O(n)
 - n inserts / calls to the hash function: $n \cdot O(1) = O(n)$
- Is there some way to avoid all those hash function calls?
 - Space/time tradeoff: Could store h(key) with each data item
 - Growing the table is still O(n); only helps by a constant factor

Hashing and comparing

- Our use of int key can lead to us overlooking a critical detail:
 - We initially hash E to get a table index
 - While chaining or probing we compare to E
 - Just need equality testing (i.e., "is it what I want")
- So a hash table needs a hash function and a comparator
 - In Project 2, you will use two function objects
 - The Java library uses a more object-oriented approach:
 each object has an equals method and a hashCode method

```
class Object {
   boolean equals(Object o) {...}
   int hashCode() {...}
   ...
}
```

Equal objects must hash the same

- The Java library (and your project hash table) make a very important assumption that clients must satisfy...
- Object-oriented way of saying it:

If a.equals(b), then we must require
a.hashCode() == b.hashCode()

• Function object way of saying it:

If c.compare(a,b) == 0, then we must require

h.hash(a) == h.hash(b)

- If you ever override equals
 - You need to override hashCode also in a consistent way
 - See CoreJava book, Chapter 5 for other "gotchas" with equals

By the way: comparison has rules too

We have not emphasized important "rules" about comparison for:

- All our dictionaries
- Sorting (next major topic)

Comparison must impose a consistent, total ordering:

```
For all a, b, and c,
```

- If compare (a,b) < 0, then compare (b,a) > 0
- If compare (a,b) == 0, then compare (b,a) == 0
- If compare(a,b) < 0 and compare(b,c) < 0,
 then compare(a,c) < 0</pre>

A Generally Good hashCode()

```
int result = 17; // start at a prime
foreach field f
int fieldHashcode =
```



```
boolean: (f ? 1: 0)
byte, char, short, int: (int) f
long: (int) (f ^ (f >>> 32))
float: Float.floatToIntBits(f)
double: Double.doubleToLongBits(f), then above
Object: object.hashCode( )
```

```
result = 31 * result + fieldHashcode;
return result;
```

Final word on hashing

- The hash table is one of the most important data structures
 - Efficient find, insert, and delete
 - Operations based on sorted order are not so efficient
 - Useful in many, many real-world applications
 - Popular topic for job interview questions
- Important to use a good hash function
 - Good distribution, Uses enough of key's values
 - Not overly expensive to calculate (bit shifts good!)
- Important to keep hash table at a good size
 - Prime #
 - Preferable λ depends on type of table
- What we skipped: Perfect hashing, universal hash functions, hopscotch hashing, cuckoo hashing
- Side-comment: hash functions have uses beyond hash tables
 - Examples: Cryptography, check-sums