

CSE 332: Data Abstractions

Lecture 3: Asymptotic Analysis

Ruth Anderson Spring 2014

Announcements

- Project 1 phase A due Mon, phase B due Thurs
- Homework 1 due Friday at <u>beginning</u> of class

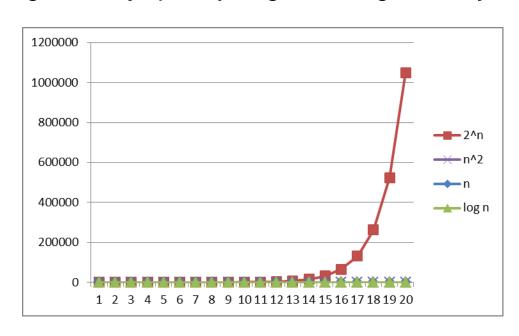
Info sheets?

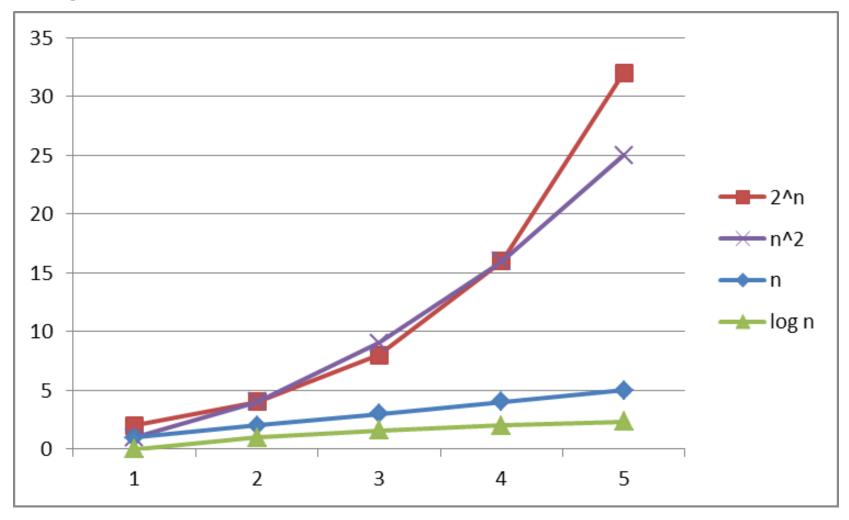
Today

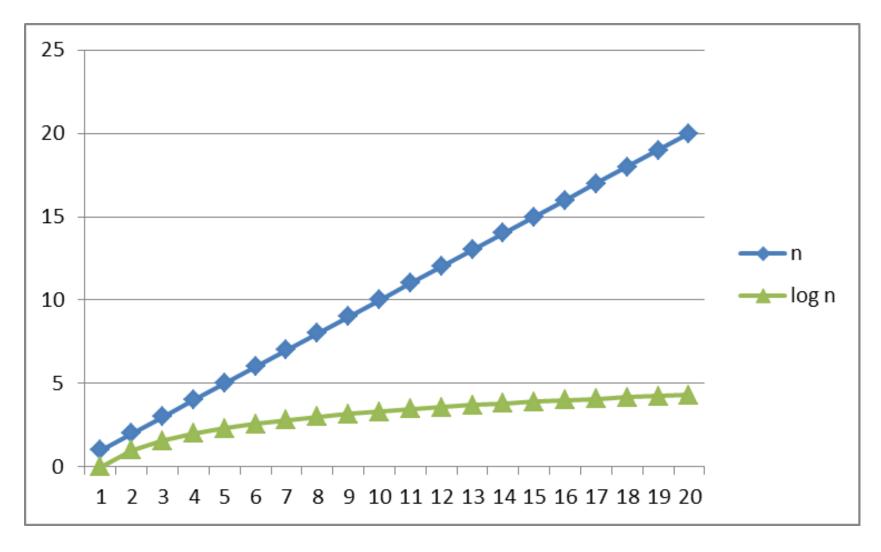
- Analyzing code
- Big-Oh

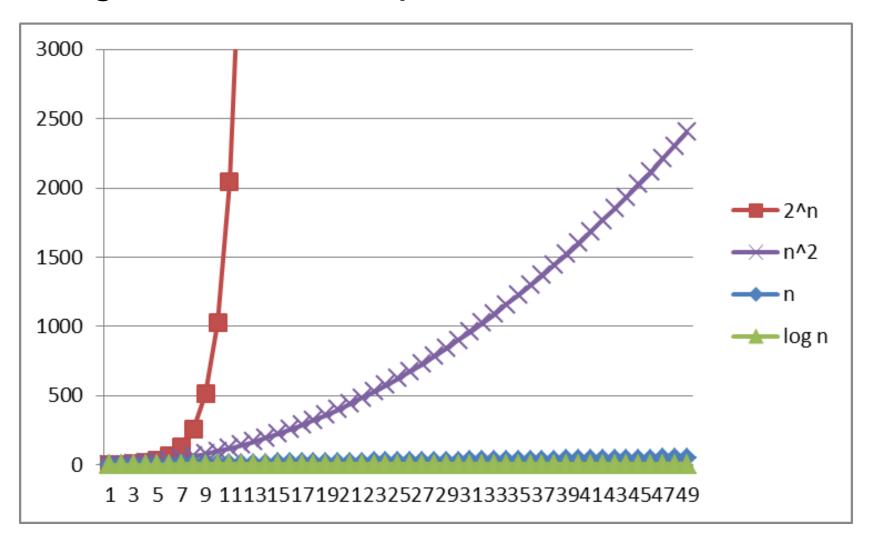
- Since so much is binary in CS, log almost always means log₂
- Definition: $log_2 x = y if x = 2^y$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!









Asymptotic notation

About to show formal definition, which amounts to saying:

- 1. Eliminate low-order terms
- 2. Eliminate coefficients

Examples:

- -4n+5
- 0.5 $n \log n + 2n + 7$
- $-n^3+2^n+3n$
- $n \log (10n^2)$

True or false?

- 1. 4+3n is O(n)
- 2. n+2logn is O(logn)
- 3. logn+2 is O(1)
- 4. n^{50} is $O(1.1^n)$

Notes:

- Do NOT ignore constants that are not multipliers:
 - n^3 is $O(n^2)$: FALSE
 - -3^n is $O(2^n)$: FALSE
- When in doubt, refer to the definition

True or false?

1	4+3n is O(n)	True
	n+2logn is O(logn)	False
3.	logn+2 is O(1)	False
4.	n ⁵⁰ is O(1.1 ⁿ)	True

Notes:

Do NOT ignore constants that are not multipliers:

 $- n^3$ is $O(n^2)$: FALSE

 -3^n is $O(2^n)$: FALSE

When in doubt, refer to the definition

Big-Oh relates functions

We use O on a function f(n) (for example n^2) to mean the set of functions with asymptotic behavior less than or equal to f(n)

So
$$(3n^2+17)$$
 is in $O(n^2)$

 $-3n^2+17$ and n^2 have the same asymptotic behavior

11

Confusingly, we also say/write:

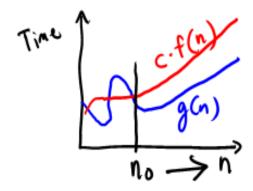
- $(3n^2+17)$ is $O(n^2)$
- $(3n^2 + 17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$

Formally Big-Oh

Definition: g(n) is in O(f(n)) iff there exist positive constants c and n_0 such that

$$g(n) \le c f(n)$$
 for all $n \ge n_0$



To show g(n) is in O(f(n)), pick a c large enough to "cover the constant factors" and n_0 large enough to "cover the lower-order terms"

• Example: Let $g(n) = 3n^2 + 17$ and $f(n) = n^2$ c = 5 and $n_0 = 10$ is more than good enough

This is "less than or equal to"

- So $3n^2+17$ is also $O(n^5)$ and $O(2^n)$ etc.

Using the definition of Big-Oh (Example 1)

```
For g(n) = 4n \& f(n) = n^2, prove g(n) is in O(f(n))
```

- A valid proof is to find valid c & n₀
- When n=4, g(n) = 16 & f(n) = 16; this is the crossing over point
- So we can choose $n_0 = 4$, and c = 1
- Note: There are many possible choices:
 ex: n₀ = 78, and c = 42 works fine

The Definition: g(n) is in O(f(n)) iff there exist *positive* constants c and n_0 such that

 $g(n) \le c f(n)$ for all $n \ge n_0$.

Using the definition of Big-Oh (Example 2)

```
For g(n) = n^4 \& f(n) = 2^n, prove g(n) is in O(f(n))
```

- A valid proof is to find valid c & n₀
- One possible answer: $n_0 = 20$, and c = 1

The Definition: g(n) is in O(f(n)) iff there exist *positive* constants c and n_0 such that

 $g(n) \le c f(n)$ for all $n \ge n_0$

What's with the c?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:

```
g(n) = 7n+5f(n) = n
```

- These have the same asymptotic behavior (linear), so g(n) is in O(f(n)) even though g(n) is always larger
- There is no positive n₀ such that g(n) ≤ f(n) for all n ≥ n₀
- The 'c' in the definition allows for that:

```
g(n) \le c f(n) for all n \ge n_0
```

To prove g(n) is in O(f(n)), have c = 12, n₀ = 1

What you can drop

- Eliminate coefficients because we don't have units anyway
 - $-3n^2$ versus $5n^2$ doesn't mean anything when we have not specified the cost of constant-time operations (can re-scale)
- Eliminate low-order terms because they have vanishingly small impact as n grows
- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - -3^{n} is not $O(2^{n})$

(This all follows from the formal definition)

Big Oh: Common Categories

From fastest to slowest

O(1) constant (same as O(k) for constant k)

 $O(\log n)$ logarithmic

O(n) linear

 $O(n \log n)$ "n $\log n$ "

 $O(n^2)$ quadratic

 $O(n^3)$ cubic

 $O(n^k)$ polynomial (where is k is any constant > 1)

 $O(k^n)$ exponential (where k is any constant > 1)

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^n for some k>1"

More Asymptotic Notation

- Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$
- Lower bound: Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in $\Omega(f(n))$ if there exist constants c and n_0 such that $g(n) \ge c f(n)$ for all $n \ge n_0$
- Tight bound: θ(f(n)) is the set of all functions asymptotically equal to f(n)
 - Intersection of O(f(n)) and $\Omega(f(n))$ (use different c values)

Regarding use of terms

A common error is to say O(f(n)) when you mean $\theta(f(n))$

- People often say O() to mean a tight bound
- Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only conveys the upper-bound
- Since f(n)=n is also $O(n^5)$, it's tempting to say "this algorithm is exactly O(n)"
- Somewhat incomplete; instead say it is $\theta(n)$
- That means that it is not, for example O(log n)

Less common notation:

- "little-oh": like "big-Oh" but strictly less than
 - Example: sum is $o(n^2)$ but not o(n)
- "little-omega": like "big-Omega" but strictly greater than
 - Example: sum is $\omega(\log n)$ but not $\omega(n)$

What we are analyzing

- The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
- Example: True statements about binary-search algorithm
 - Common: $\theta(\log n)$ running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case (item is in the middle)
 - Less common: Algorithm is $\Omega(\log \log n)$ in the worst-case (it is not really, really, really fast asymptotically)
 - Less common (but very good to know): the find-in-sorted-array **problem** is $\Omega(\log n)$ in the worst-case
 - No algorithm can do better (without parallelism)
 - A problem cannot be O(f(n)) since you can always find a slower algorithm, but can mean there exists an algorithm

Other things to analyze

- Space instead of time
 - Remember we can often use space to gain time
- Average case
 - Sometimes only if you assume something about the distribution of inputs
 - See CSE312 and STAT391
 - Sometimes uses randomization in the algorithm
 - Will see an example with sorting; also see CSE312
 - Sometimes an amortized guarantee
 - Will discuss in a later lecture

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
 - Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

Big-Oh Caveats

- Asymptotic complexity (Big-Oh) focuses on behavior for <u>large n</u> and is independent of any computer / coding trick
 - But you can "abuse" it to be misled about trade-offs
 - Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the "cross-over" point is around 5 * 10¹⁷
 - So if you have input size less than 2^{58} , prefer $n^{1/10}$
- Comparing O() for <u>small n</u> values can be misleading
 - Quicksort: O(nlogn) (expected)
 - Insertion Sort: O(n²) (expected)
 - Yet in reality Insertion Sort is faster for small n's
 - We'll learn about these sorts later

Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, mathematically, not the implementation
 - Reason about performance as a function of n
 - Be able to mathematically prove things about performance
- Yet, timing has its place
 - In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 - Ex: Benchmarking graphics cards
 - We will do some timing in project 3 (and in 2, a bit)
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful

Extra slides

Powers of 2

- A bit is 0 or 1
- A sequence of n bits can represent 2ⁿ distinct things
 - For example, the numbers 0 through 2ⁿ-1
- 2¹⁰ is 1024 ("about a thousand", kilo in CSE speak)
- 2²⁰ is "about a million", mega in CSE speak
- 2³⁰ is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is 2⁶³-1

Therefore...

Could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

Properties of logarithms

- log(A*B) = log A + log B- $So log(N^k) = k log N$
- log(A/B) = log A log B
- $\mathbf{x} = \log_2 2^x$
- log(log x) is written log log x
 - Grows as slowly as 2^{2^y} grows fast
 - Ex: $\log_2 \log_2 4billion \sim \log_2 \log_2 2^{32} = \log_2 32 = 5$
- $(\log x)(\log x)$ is written $\log^2 x$
 - It is greater than log x for all x > 2

Log base doesn't matter (much)

"Any base B log is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $log_2 x = 3.22 log_{10} x$
- In general, we can convert log bases via a constant multiplier
- Say, to convert from base A to base B:

$$\log_{B} x = (\log_{A} x) / (\log_{A} B)$$

Algorithm Analysis

As the "size" of an algorithm's input grows (integer, length of array, size of queue, etc.):

- How much longer does the algorithm take (time)
- How much more memory does the algorithm need (space)

Because the curves we saw are so different, we often only care about "which curve we are like"

Separate issue: Algorithm *correctness* – does it produce the right answer for all inputs

Usually more important, naturally

What does this pseudocode return?

```
x := 0;
for i=1 to N do
   for j=1 to i do
    x := x + 3;
return x;
```

• Correctness: For any N ≥ 0, it returns...

What does this pseudocode return?

```
x := 0;
for i=1 to N do
   for j=1 to i do
    x := x + 3;
return x;
```

- Correctness: For any N ≥ 0, it returns 3N(N+1)/2
- Proof: By induction on n
 - P(n) = after outer for-loop executes n times, \mathbf{x} holds 3n(n+1)/2
 - Base: n=0, returns 0
 - Inductive: From P(k), **x** holds 3k(k+1)/2 after k iterations. Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1) = (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2

How long does this pseudocode run?

```
x := 0;
for i=1 to N do
   for j=1 to i do
    x := x + 3;
return x;
```

- Running time: For any N ≥ 0,
 - Assignments, additions, returns take "1 unit time"
 - Loops take the sum of the time for their iterations
- So: 2 + 2*(number of times inner loop runs)
 - And how many times is that?

How long does this pseudocode run?

```
x := 0;
for i=1 to N do
   for j=1 to i do
    x := x + 3;
return x;
```

How many times does the inner loop run?

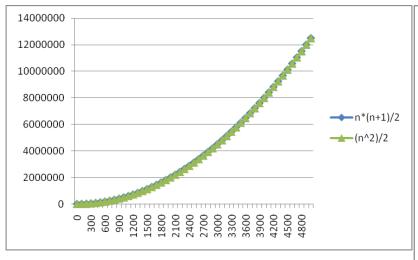
How long does this pseudocode run?

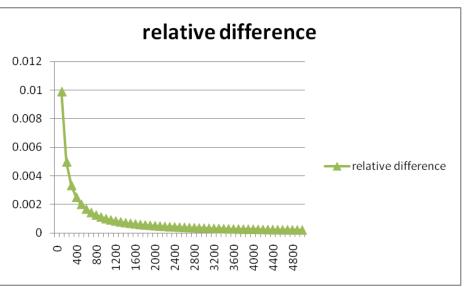
```
x := 0;
for i=1 to N do
   for j=1 to i do
    x := x + 3;
return x;
```

- The total number of loop iterations is N*(N+1)/2
 - This is a very common loop structure, worth memorizing
 - This is *proportional to* N^2 , and we say $O(N^2)$, "big-Oh of"
 - For large enough N, the N and constant terms are irrelevant, as are the first assignment and return
 - See plot... N*(N+1)/2 vs. just N²/2

Lower-order terms don't matter

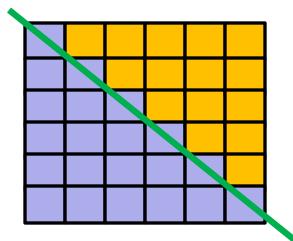
$N^*(N+1)/2$ vs. just $N^2/2$





Geometric interpretation

```
\sum_{i=1}^{N} i = N*N/2+N/2
for i=1 to N do
for j=1 to i do
// small work
```



- Area of square: N*N
- Area of lower triangle of square: N*N/2
- Extra area from squares crossing the diagonal: N*1/2
- As N grows, fraction of "extra area" compared to lower triangle goes to zero (becomes insignificant)

Recurrence Equations

- For running time, what the loops did was irrelevant, it was how many times they executed.
- Running time as a function of input size n (here loop bound): T(n) = n + T(n-1)

(and T(0) = 2ish, but usually implicit that T(0) is some constant)

- Any algorithm with running time described by this formula is $O(n^2)$
- "Big-Oh" notation also ignores the constant factor on the highorder term, so 3N² and 17N² and (1/1000) N² are all O(N²)
 - As N grows large enough, no smaller term matters
 - Next time: Many more examples + formal definitions