CSE332: Data Abstractions
Lecture 2: Algorithm Analysis

Ruth Anderson

Spring 2014

Announcements

- Project 1 - phase A due Monday
- Homework 1 - (out today) due next Friday (normally due on Wed)
- Office Hours - posted soon

Today

- Finish discussing queues
- Begin analyzing algorithms
- Using asymptotic analysis (continue next time)

Algorithm Analysis

- Correctness:
- Does the algorithm do what is intended.
- Performance:
- Speed
- Memory
time complexity
space complexity
- Why analyze?
- To make good design decisions
- Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.

Correctness

Correctness of an algorithm is established by proof. Common approaches:

- (Dis)proof by counterexample
- Proof by contradiction
- Proof by induction
- Especially useful in recursive algorithms

Proof by Induction

- Base Case: The algorithm is correct for a base case or two by inspection.
- Inductive Hypothesis (n=k): Assume that the algorithm works correctly for the first k cases.
- Inductive Step ($\mathbf{n}=\mathbf{k}+\mathbf{1}$): Given the hypothesis above, show that the $k+1$ case will be calculated correctly.

Mathematical induction

Suppose $P(n)$ is some predicate (involving integer n)

- Example: $\quad n \geq n / 2+1 \quad$ (for all $n \geq 2$)

To prove $P(n)$ for all integers $n \geq c$, it suffices to prove

1. $P(c)$ - called the "basis" or "base case"
2. If $P(k)$ then $P(k+1)$ - called the "induction step" or "inductive case"

We will use induction:
To show an algorithm is correct or has a certain running time no matter how big a data structure or input value is (Our " n " will be the data structure or input size.)
$P(n)=$ " the sum of the first n powers of $2\left(\right.$ starting at $\left.2^{0}\right)$ is $2^{n-1} "$

Inductive Proof Example

Theorem: $P(n)$ holds for all $n \geq 1$
Proof: By induction on n

- Base case, $n=1$: Sum of first power of 2 is 2^{0}, which equals 1 . And for $n=1,2^{n}-1$ equals 1 .
- Inductive case:
- Inductive hypothesis: Assume the sum of the first k powers of 2 is $2^{\mathrm{k}}-1$
- Show, given the hypothesis, that the sum of the first $(k+1)$ powers of 2 is $2^{k+1}-1$
From our inductive hypothesis we know:

$$
1+2+4+\ldots+2^{k-1}=2^{k}-1
$$

Add the next power of 2 to both sides...

$$
1+2+4+\ldots+2^{k-1}+2^{k}=2^{k}-1+2^{k}
$$

We have what we want on the left; massage the right a bit

$$
1+2+4+\ldots+2^{k-1}+2^{k}=2\left(2^{k}\right)-1=2^{k+1}-1
$$

Note for homework

Proofs by induction will come up a fair amount on the homework

When doing them, be sure to state each part clearly:

- What you're trying to prove
- The base case
- The inductive case
- The inductive hypothesis
- In many inductive proofs, you'll prove the inductive case by just starting with your inductive hypothesis, and playing with it a bit, as shown above

How should we compare two algorithms?

Gauging performance

- Uh, why not just run the program and time it
- Too much variability, not reliable or portable:
- Hardware: processor(s), memory, etc.
- OS, Java version, libraries, drivers
- Other programs running
- Implementation dependent
- Choice of input
- Testing (inexhaustive) may miss worst-case input
- Timing does not explain relative timing among inputs (what happens when n doubles in size)
- Often want to evaluate an algorithm, not an implementation
- Even before creating the implementation ("coding it up")

Comparing algorithms

When is one algorithm (not implementation) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is performance: for sufficiently large inputs, runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is "plenty good" for small inputs (if n is 10, probably anything is fast enough)

Answer will be independent of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

- Can do analysis before coding!

Analyzing code ("worst case")

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Etc.
(This is an approximation of reality: a very useful "lie".)

Consecutive statements
Conditionals

Loops
Function Calls
Recursion

Sum of time of each statement
Time of condition plus time of slower branch
Num iterations * time for loop body
Time of function's body
Solve recurrence equation

Complexity cases

We'll start by focusing on two cases:

- Worst-case complexity: max \# steps algorithm takes on "most challenging" input of size N
- Best-case complexity: min \# steps algorithm takes on "easiest" input of size N

Example

```
|2
```

Find an integer in a sorted array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    ???
}
```


Linear search

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 16 & 37 & 50 & 73 & 75 & 126 \\
\hline
\end{array}
$$

Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) \{
for (int i=0; i < arr.length; ++i)
if(arr[i] == k) return true;
return false;
\}

4/2/2014

Best case:

Worst case:

Linear search

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 16 & 37 & 50 & 73 & 75 & 126 \\
\hline
\end{array}
$$

Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) \{
for (int i=0; i < arr.length; ++i)

if(arr[i] ==k)

 return true;return false;
\}
Best case: 6 "ish" steps $=O(1)$
Worst case: 5 "ish" * (arr.length)
$=O$ (arr.length)

Analyzing Recursive Code

- Computing run-times gets interesting with recursion
- Say we want to perform some computation recursively on a list of size n
- Conceptually, in each recursive call we:
- Perform some amount of work, call it w(n)
- Call the function recursively with a smaller portion of the list
- So, if we do w(n) work per step, and reduce the problem size in the next recursive call by 1 , we do total work:

$$
T(n)=w(n)+T(n-1)
$$

- With some base case, like $T(1)=5=O(1)$

Example Recursive code: sum array

Recursive:

- Recurrence is some constant amount of work $\mathrm{O}(1)$ done n times

```
int sum(int[] arr){
    return help(arr,0);
}
int help(int[]arr,int i) {
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr,i+1);
}
```

Each time help is called, it does that $\mathrm{O}(1)$ amount of work, and then calls help again on a problem one less than previous problem size.
Recurrence Relation: $T(n)=O(1)+T(n-1)$

Solving Recurrence Relations

- Say we have the following recurrence relation:

$$
\begin{aligned}
& T(n)=6 \text { "ish"+T(n-1) } \\
& T(1)=9 \text { "ish" } \quad \text { base case }
\end{aligned}
$$

- Now we just need to solve it; that is, reduce it to a closed form.
- Start by writing it out:

$$
\begin{aligned}
T(n) & =6+T(n-1) \\
& =6+6+T(n-2) \\
& =6+6+6+T(n-3) \\
& =6 k+T(n-k) \\
& =6+6+6+\ldots+6+T(1)=6+6+6+\ldots+6+9 \\
& =6 k+9, \text { where } k \text { is the } \# \text { of times we expanded } T()
\end{aligned}
$$

- We expanded it out n - 1 times, so

$$
\begin{aligned}
T(n) & =6 k+T(n-k) \\
& =6(n-1)+T(1)=6(n-1)+9 \\
& =6 n+3=O(n)
\end{aligned}
$$

Or When does $\mathrm{n}-\mathrm{k}=1$?
Answer: when $k=n-1$

Best case:

Binary search

2	3	5	16	37	50	73	75	126

Find an integer in a sorted array

- Can also be done non-recursively but "doesn't matter" here

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}
```


Binary search

Best case: 9 "ish" steps $=O(1)$
Worst case: $T(n)=10$ "ish" $+T(n / 2)$ where n is hi-lo

- $O(\log n)$ where n is array. length
- Solve recurrence equation to know that...

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}
```


Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

$$
-\quad T(n)=10+T(n / 2) \quad T(1)=15
$$

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

$$
-\quad T(n)=10+T(n / 2) \quad T(1)=15
$$

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.

$$
\begin{aligned}
-\quad T(n) & =10+10+T(n / 4) \\
& =10+10+10+T(n / 8) \\
& =\ldots \\
& =10 \mathrm{k}+T\left(n /\left(2^{\mathrm{k}}\right)\right) \quad \text { (where } \mathrm{k} \text { is the number of expansions) }
\end{aligned}
$$

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

- $\quad n /\left(2^{k}\right)=1$ means $n=2^{\mathrm{k}}$ means $\mathrm{k}=\log _{2} n$
- So $T(n)=10 \log _{2} n+15$ (get to base case and do it)
- So $T(n)$ is $O(\log n)$

Ignoring constant factors

- So binary search is $O(\log n)$ and linear is $O(n)$
- But which will actually be faster?
- Depending on constant factors and size of n, in a particular situation, linear search could be faster....
- Could depend on constant factors
- How many assignments, additions, etc. for each n
- And could depend on size of n
- But there exists some n_{0} such that for all $n>n_{0}$ binary search wins
- Let's play with a couple plots to get some intuition...

Example

- Let's try to "help" linear search
- Run it on a computer 100x as fast (say 2010 model vs. 1990)
- Use a new compiler/language that is $3 x$ as fast
- Be a clever programmer to eliminate half the work
- So doing each iteration is 600x as fast as in binary search
- Note: 600x still helpful for problems without logarithmic algorithms!

Another example: sum array

Two "obviously" linear algorithms: $T(n)=O(1)+T(n-1)$

Iterative:

```
int sum(int[] arr){
    int ans = 0;
    for(int i=0; i<arr.length; ++i)
        ans += arr[i];
    return ans;
}
```

Recursive:

- Recurrence is $C+C+\ldots+c$ for n times

```
int sum(int[] arr){
    return help(arr,0);
}
int help(int[]arr,int i) {
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr,i+1);
}
```


What about a binary version of sum?

```
int sum(int[] arr){
    return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi) return 0;
    if(lo==hi-1) return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```

Recurrence is $T(n)=O(1)+2 T(n / 2)$
$-1+2+4+8+\ldots$ for $\log n$ times
$-2^{(\log n)}-1$ which is proportional to n (by definition of logarithm)
Easier explanation: it adds each number once while doing little else
"Obvious": You can't do better than $O(n)$ - have to read whole array

Parallelism teaser

- But suppose we could do two recursive calls at the same time
- Like having a friend do half the work for you!
int sum(int[]arr) \{
return help(arr, $0, a r r . l e n g t h) ;$
\}
int help(int[]arr, int lo, int hi) \{
if(lo==hi) return 0;
if(lo==hi-1) return arr[lo];
int mid (ni+lo)/2;
return help (arr, lo, mid) + help (arr,mid,hi)
\}
- If you have as many "friends of friends" as needed, the recurrence is now $T(n)=O(1)+1 T(n / 2)$
- $O(\log n):$ same recurrence as for find

Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

$$
\begin{array}{ll}
T(n)=O(1)+T(n-1) & \\
\text { linear } \\
T(n)=O(1)+2 T(n / 2) & \\
\text { linear } \\
T(n)=O(1)+T(n / 2) & \\
\text { logarithmic } \\
T(n)=O(1)+2 T(n-1) & \\
T(n)=O(n)+T(n-1) & \\
\text { exponential } \\
T(n)=O(n)+T(n / 2) & \\
\text { quadratic } \\
T(n)=O(n)+2 T(n / 2) & \\
O(n \log n)
\end{array}
$$

Note big-Oh can also use more than one variable

- Example: can sum all elements of an n-by- m matrix in $O(n m)$

