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Announcements 

• Project 1 – phase A due Monday 

 

• Homework 1 – (out today) due next Friday (normally due on 

Wed) 

 

• Office Hours – posted soon 
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Today 

• Finish discussing queues 

 

• Begin analyzing algorithms 

– Using asymptotic analysis (continue next time) 
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Algorithm Analysis 

• Correctness: 

– Does the algorithm do what is intended. 

 

• Performance: 

– Speed   time complexity 

–  Memory   space complexity 

 

• Why analyze? 

– To make good design decisions 

– Enable you to look at an algorithm (or code) and identify the 

bottlenecks, etc. 
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Correctness 

Correctness of an algorithm is established by proof. Common 

approaches: 

 

• (Dis)proof by counterexample 

• Proof by contradiction 

• Proof by induction 

– Especially useful in recursive algorithms 
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Proof by Induction 

• Base Case: The algorithm is correct for a base case or two by 

inspection. 

 

• Inductive Hypothesis (n=k): Assume that the algorithm works 

correctly for the first k cases. 

 

• Inductive Step (n=k+1): Given the hypothesis above, show that 

the k+1 case will be calculated correctly. 
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Mathematical induction 

Suppose P(n) is some predicate (involving integer n) 

– Example:  n ≥ n/2 + 1 (for all n ≥ 2) 

 

To prove P(n) for all integers n ≥ c, it suffices to prove 

1. P(c) – called the “basis” or “base case” 

2. If P(k) then P(k+1) – called the “induction step” or “inductive case” 

 

We will use induction:  

 To show an algorithm is correct or has a certain running time     

no matter how big a data structure or input value is 

 (Our “n” will be the data structure or input size.) 
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Inductive Proof Example 

8 

Theorem: P(n) holds for all n ≥ 1 

Proof: By induction on n 

• Base case, n=1: Sum of first power of 2 is 20, which equals 1. 

        And for n=1, 2n-1 equals 1. 

• Inductive case: 

– Inductive hypothesis: Assume the sum of the first k powers 

of 2 is 2k-1 

– Show, given the hypothesis, that the sum of the first (k+1) 

powers of 2 is 2k+1-1 

From our inductive hypothesis we know: 

 

Add the next power of 2 to both sides… 

 

We have what we want on the left; massage the right a bit 

122...421 1   kk

kkkk 21222...421 1  

121)2(222...421 11   kkkk

P(n) = “  the sum of the first n powers of 2 (starting at 20) is 2n-1  ” 
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Note for homework 

9 

Proofs by induction will come up a fair amount on the homework 

 

When doing them, be sure to state each part clearly: 

• What you’re trying to prove 

• The base case 

• The inductive case 

• The inductive hypothesis 

– In many inductive proofs, you’ll prove the inductive case by 

just starting with your inductive hypothesis, and playing with 

it a bit, as shown above 
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How should we compare two algorithms? 
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Gauging performance 

• Uh, why not just run the program and time it 

– Too much variability, not reliable or portable: 

• Hardware: processor(s), memory, etc. 

• OS, Java version, libraries, drivers 

• Other programs running 

• Implementation dependent 

– Choice of input 

• Testing (inexhaustive) may miss worst-case input 

• Timing does not explain relative timing among inputs 

(what happens when n doubles in size) 

 

• Often want to evaluate an algorithm, not an implementation 

– Even before creating the implementation (“coding it up”) 
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Comparing algorithms 

When is one algorithm (not implementation) better than another? 

– Various possible answers (clarity, security, …) 

– But a big one is performance: for sufficiently large inputs, 

runs in less time (our focus) or less space 
 

Large inputs (n) because probably any algorithm is “plenty good” 

for small inputs (if n is 10, probably anything is fast enough) 
 

Answer will be independent of CPU speed, programming language, 

coding tricks, etc. 
 

Answer is general and rigorous, complementary to “coding it up 

and timing it on some test cases” 

– Can do analysis before coding! 
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Analyzing code (“worst case”) 

Basic operations  take “some amount of” constant time 

– Arithmetic (fixed-width) 

– Assignment 

– Access one Java field or array index 

– Etc. 

(This is an approximation of reality: a very useful “lie”.) 

 

Consecutive statements  Sum of time of each statement 

Conditionals   Time of condition plus time of  

        slower branch 

Loops    Num iterations * time for loop body 

Function Calls   Time of function’s body 

Recursion   Solve recurrence equation 
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Complexity cases 

We’ll start by focusing on two cases: 

 

• Worst-case complexity: max # steps algorithm takes on “most 

challenging” input of size N 

 

• Best-case complexity: min # steps algorithm takes on “easiest” 

input of size N 
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Example 

Find an integer in a sorted array 

      

 

2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   ??? 

} 
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Linear search 

Find an integer in a sorted array 

      

 

2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   for(int i=0; i < arr.length; ++i) 

      if(arr[i] == k) 

        return true; 

   return false; 

} 
Best case: 

 

Worst case: 
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Linear search 

Find an integer in a sorted array 

      

 

2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   for(int i=0; i < arr.length; ++i) 

      if(arr[i] == k) 

        return true; 

   return false; 

} 

Best case:  6 “ish” steps = O(1) 

Worst case: 5 “ish”  *  (arr.length)  

       = O(arr.length) 
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Analyzing Recursive Code 

• Computing run-times gets interesting with recursion 

• Say we want to perform some computation recursively on a list of 

size n 

– Conceptually, in each recursive call we: 

• Perform some amount of work, call it w(n) 

• Call the function recursively with a smaller portion of the list 

 

• So, if we do w(n) work per step, and reduce the problem size in 

the next recursive call by 1, we do total work: 

 T(n)=w(n)+T(n-1) 

• With some base case, like T(1)=5=O(1) 
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Example Recursive code: sum array 

Each time help is called, it does that O(1) amount of work, and 

then calls help again on a problem one less than previous 

problem size. 

Recurrence Relation: T(n) = O(1) + T(n-1) 

int sum(int[] arr){ 
  return help(arr,0); 
} 
int help(int[]arr,int i) { 
  if(i==arr.length)  
    return 0; 
  return arr[i] + help(arr,i+1); 
} 

Recursive: 

– Recurrence is  

 some constant 

amount of work 

O(1) done n 

times 
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Solving Recurrence Relations 
• Say we have the following recurrence relation: 

  T(n)=6 “ish”+T(n-1) 

  T(1)=9 “ish”   base case 

• Now we just need to solve it; that is, reduce it to a closed form. 

• Start by writing it out: 

 T(n)=6+T(n-1) 

        =6+6+T(n-2) 

        =6+6+6+T(n-3) 

        =6k+T(n-k) 

        =6+6+6+…+6+T(1)  =  6+6+6+…+6+9 

        =6k+9, where k is the # of times we expanded T() 

• We expanded it out n-1 times, so 

 T(n)=6k+T(n-k) 

        =6(n-1)+T(1) = 6(n-1)+9 

        =6n+3 = O(n) 

Or  When does n-k=1? 

Answer: when k=n-1 
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Binary search 

Find an integer in a sorted array 

– Can also be done non-recursively but “doesn’t matter” here 

      

 

2 3 5 16 37 50 73 75 126 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    

Best case: 

 

Worst case: 
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Binary search 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    

Best case: 9 “ish” steps = O(1) 

Worst case: T(n) = 10 “ish” + T(n/2) where n is hi-lo 

• O(log n) where n is array.length 

• Solve recurrence equation to know that… 
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Solving Recurrence Relations 

1. Determine the recurrence relation.  What is the base case? 

– T(n) = 10 + T(n/2) T(1) = 15 

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions. 

 

 

 

 

3. Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base case 
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Solving Recurrence Relations 

1. Determine the recurrence relation.  What is the base case? 

– T(n) = 10 + T(n/2) T(1) = 15 

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions. 

– T(n)  = 10 + 10 + T(n/4) 

          = 10 + 10 + 10 + T(n/8) 

                 = … 

                 = 10k + T(n/(2k))    (where k is the number of expansions) 

3. Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base case 

– n/(2k) = 1 means n = 2k  means k = log2 n 

– So T(n) = 10 log2 n + 15  (get to base case and do it) 

– So T(n) is O(log n) 

 

4/2/2014 24 



Ignoring constant factors 

• So binary search is O(log n) and linear is O(n)  

– But which will actually be faster? 

– Depending on constant factors and size of n, in a particular 

situation, linear search could be faster…. 

 

• Could depend on constant factors 

– How many assignments, additions, etc. for each n 

– And could depend on size of n 

 

• But there exists some n0 such that for all n > n0 binary search wins 

 

• Let’s play with a couple plots to get some intuition… 
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Example 

• Let’s try to “help” linear search 

– Run it on a computer 100x as fast (say 2010 model vs. 1990) 

– Use a new compiler/language that is 3x as fast 

– Be a clever programmer to eliminate half the work 

– So doing each iteration is 600x as fast as in binary search 

• Note: 600x still helpful for problems without logarithmic algorithms! 
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Another example: sum array 

Two “obviously” linear algorithms: T(n) = O(1) + T(n-1) 

int sum(int[] arr){ 
  int ans = 0; 
  for(int i=0; i<arr.length; ++i) 
     ans += arr[i];  
  return ans; 
} 

int sum(int[] arr){ 
  return help(arr,0); 
} 
int help(int[]arr,int i) { 
  if(i==arr.length)  
    return 0; 
  return arr[i] + help(arr,i+1); 
} 

Recursive: 

– Recurrence is  

 c + c  + … + c   

 for n times 

 

Iterative: 
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What about a binary version of sum? 

Recurrence is T(n) = O(1) + 2T(n/2) 

– 1 + 2 + 4 + 8 + …   for log n times 

– 2(log n) – 1 which is proportional to n (by definition of logarithm) 
 

Easier explanation: it adds each number once while doing little else 
 

“Obvious”: You can’t do better than O(n) – have to read whole array 

 

int sum(int[] arr){ 
   return help(arr,0,arr.length); 
} 
int help(int[] arr, int lo, int hi) { 
   if(lo==hi)   return 0; 
   if(lo==hi-1) return arr[lo];    
   int mid = (hi+lo)/2; 
   return help(arr,lo,mid) + help(arr,mid,hi); 
} 
    

4/2/2014 28 



Parallelism teaser 

• But suppose we could do two recursive calls at the same time 

– Like having a friend do half the work for you! 

int sum(int[]arr){ 
   return help(arr,0,arr.length); 
} 
int help(int[]arr, int lo, int hi) { 
   if(lo==hi)   return 0; 
   if(lo==hi-1) return arr[lo];    
   int mid = (hi+lo)/2; 
   return help(arr,lo,mid) + help(arr,mid,hi); 
} 
    

 • If you have as many “friends of friends” as needed, the recurrence 

is now   T(n) = O(1) + 1T(n/2) 

– O(log n)  : same recurrence as for find 
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Really common recurrences 

Should know how to solve recurrences but also recognize some 

really common ones: 
 

 T(n) = O(1) + T(n-1)  linear 

 T(n) = O(1) + 2T(n/2)  linear 

 T(n) = O(1) + T(n/2)   logarithmic 

 T(n) = O(1) + 2T(n-1)  exponential 

 T(n) = O(n) + T(n-1)   quadratic  

 T(n) = O(n) + T(n/2)   linear 

 T(n) = O(n) + 2T(n/2)  O(n log n) 

 

Note big-Oh can also use more than one variable 

• Example: can sum all elements of an n-by-m matrix in O(nm) 
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