
CSE332: Data Abstractions

Lecture 2: Algorithm Analysis

Ruth Anderson

Spring 2014

Announcements

• Project 1 – phase A due Monday

• Homework 1 – (out today) due next Friday (normally due on

Wed)

• Office Hours – posted soon

4/2/2014 2

Today

• Finish discussing queues

• Begin analyzing algorithms

– Using asymptotic analysis (continue next time)

4/2/2014 3

Algorithm Analysis

• Correctness:

– Does the algorithm do what is intended.

• Performance:

– Speed time complexity

– Memory space complexity

• Why analyze?

– To make good design decisions

– Enable you to look at an algorithm (or code) and identify the

bottlenecks, etc.

4/2/2014 4

Correctness

Correctness of an algorithm is established by proof. Common

approaches:

• (Dis)proof by counterexample

• Proof by contradiction

• Proof by induction

– Especially useful in recursive algorithms

4/2/2014 5

Proof by Induction

• Base Case: The algorithm is correct for a base case or two by

inspection.

• Inductive Hypothesis (n=k): Assume that the algorithm works

correctly for the first k cases.

• Inductive Step (n=k+1): Given the hypothesis above, show that

the k+1 case will be calculated correctly.

4/2/2014 6

Mathematical induction

Suppose P(n) is some predicate (involving integer n)

– Example: n ≥ n/2 + 1 (for all n ≥ 2)

To prove P(n) for all integers n ≥ c, it suffices to prove

1. P(c) – called the “basis” or “base case”

2. If P(k) then P(k+1) – called the “induction step” or “inductive case”

We will use induction:

 To show an algorithm is correct or has a certain running time

no matter how big a data structure or input value is

 (Our “n” will be the data structure or input size.)

4/2/2014 7

Inductive Proof Example

8

Theorem: P(n) holds for all n ≥ 1

Proof: By induction on n

• Base case, n=1: Sum of first power of 2 is 20, which equals 1.

 And for n=1, 2n-1 equals 1.

• Inductive case:

– Inductive hypothesis: Assume the sum of the first k powers

of 2 is 2k-1

– Show, given the hypothesis, that the sum of the first (k+1)

powers of 2 is 2k+1-1

From our inductive hypothesis we know:

Add the next power of 2 to both sides…

We have what we want on the left; massage the right a bit

122...421 1 kk

kkkk 21222...421 1

121)2(222...421 11 kkkk

P(n) = “ the sum of the first n powers of 2 (starting at 20) is 2n-1 ”

4/2/2014

Note for homework

9

Proofs by induction will come up a fair amount on the homework

When doing them, be sure to state each part clearly:

• What you’re trying to prove

• The base case

• The inductive case

• The inductive hypothesis

– In many inductive proofs, you’ll prove the inductive case by

just starting with your inductive hypothesis, and playing with

it a bit, as shown above

4/2/2014

How should we compare two algorithms?

4/2/2014 10

Gauging performance

• Uh, why not just run the program and time it

– Too much variability, not reliable or portable:

• Hardware: processor(s), memory, etc.

• OS, Java version, libraries, drivers

• Other programs running

• Implementation dependent

– Choice of input

• Testing (inexhaustive) may miss worst-case input

• Timing does not explain relative timing among inputs

(what happens when n doubles in size)

• Often want to evaluate an algorithm, not an implementation

– Even before creating the implementation (“coding it up”)

4/2/2014 11

Comparing algorithms

When is one algorithm (not implementation) better than another?

– Various possible answers (clarity, security, …)

– But a big one is performance: for sufficiently large inputs,

runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is “plenty good”

for small inputs (if n is 10, probably anything is fast enough)

Answer will be independent of CPU speed, programming language,

coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up

and timing it on some test cases”

– Can do analysis before coding!

4/2/2014 12

Analyzing code (“worst case”)

Basic operations take “some amount of” constant time

– Arithmetic (fixed-width)

– Assignment

– Access one Java field or array index

– Etc.

(This is an approximation of reality: a very useful “lie”.)

Consecutive statements Sum of time of each statement

Conditionals Time of condition plus time of

 slower branch

Loops Num iterations * time for loop body

Function Calls Time of function’s body

Recursion Solve recurrence equation

4/2/2014 13

Complexity cases

We’ll start by focusing on two cases:

• Worst-case complexity: max # steps algorithm takes on “most

challenging” input of size N

• Best-case complexity: min # steps algorithm takes on “easiest”

input of size N

4/2/2014 14

Example

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

 ???

}

4/2/2014 15

Linear search

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

 for(int i=0; i < arr.length; ++i)

 if(arr[i] == k)

 return true;

 return false;

}
Best case:

Worst case:

 4/2/2014 16

Linear search

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

 for(int i=0; i < arr.length; ++i)

 if(arr[i] == k)

 return true;

 return false;

}

Best case: 6 “ish” steps = O(1)

Worst case: 5 “ish” * (arr.length)

 = O(arr.length)

4/2/2014 17

Analyzing Recursive Code

• Computing run-times gets interesting with recursion

• Say we want to perform some computation recursively on a list of

size n

– Conceptually, in each recursive call we:

• Perform some amount of work, call it w(n)

• Call the function recursively with a smaller portion of the list

• So, if we do w(n) work per step, and reduce the problem size in

the next recursive call by 1, we do total work:

 T(n)=w(n)+T(n-1)

• With some base case, like T(1)=5=O(1)

4/2/2014 18

Example Recursive code: sum array

Each time help is called, it does that O(1) amount of work, and

then calls help again on a problem one less than previous

problem size.

Recurrence Relation: T(n) = O(1) + T(n-1)

int sum(int[] arr){
 return help(arr,0);
}
int help(int[]arr,int i) {
 if(i==arr.length)
 return 0;
 return arr[i] + help(arr,i+1);
}

Recursive:

– Recurrence is

 some constant

amount of work

O(1) done n

times

4/2/2014 19

Solving Recurrence Relations
• Say we have the following recurrence relation:

 T(n)=6 “ish”+T(n-1)

 T(1)=9 “ish” base case

• Now we just need to solve it; that is, reduce it to a closed form.

• Start by writing it out:

 T(n)=6+T(n-1)

 =6+6+T(n-2)

 =6+6+6+T(n-3)

 =6k+T(n-k)

 =6+6+6+…+6+T(1) = 6+6+6+…+6+9

 =6k+9, where k is the # of times we expanded T()

• We expanded it out n-1 times, so

 T(n)=6k+T(n-k)

 =6(n-1)+T(1) = 6(n-1)+9

 =6n+3 = O(n)

Or When does n-k=1?

Answer: when k=n-1

4/2/2014 20

Binary search

Find an integer in a sorted array

– Can also be done non-recursively but “doesn’t matter” here

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Best case:

Worst case:

4/2/2014 21

Binary search

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2;
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Best case: 9 “ish” steps = O(1)

Worst case: T(n) = 10 “ish” + T(n/2) where n is hi-lo

• O(log n) where n is array.length

• Solve recurrence equation to know that…

4/2/2014 22

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

– T(n) = 10 + T(n/2) T(1) = 15

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

4/2/2014 23

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

– T(n) = 10 + T(n/2) T(1) = 15

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

– T(n) = 10 + 10 + T(n/4)

 = 10 + 10 + 10 + T(n/8)

 = …

 = 10k + T(n/(2k)) (where k is the number of expansions)

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

– n/(2k) = 1 means n = 2k means k = log2 n

– So T(n) = 10 log2 n + 15 (get to base case and do it)

– So T(n) is O(log n)

4/2/2014 24

Ignoring constant factors

• So binary search is O(log n) and linear is O(n)

– But which will actually be faster?

– Depending on constant factors and size of n, in a particular

situation, linear search could be faster….

• Could depend on constant factors

– How many assignments, additions, etc. for each n

– And could depend on size of n

• But there exists some n0 such that for all n > n0 binary search wins

• Let’s play with a couple plots to get some intuition…

4/2/2014 25

Example

• Let’s try to “help” linear search

– Run it on a computer 100x as fast (say 2010 model vs. 1990)

– Use a new compiler/language that is 3x as fast

– Be a clever programmer to eliminate half the work

– So doing each iteration is 600x as fast as in binary search

• Note: 600x still helpful for problems without logarithmic algorithms!

4/2/2014 26

Another example: sum array

Two “obviously” linear algorithms: T(n) = O(1) + T(n-1)

int sum(int[] arr){
 int ans = 0;
 for(int i=0; i<arr.length; ++i)
 ans += arr[i];
 return ans;
}

int sum(int[] arr){
 return help(arr,0);
}
int help(int[]arr,int i) {
 if(i==arr.length)
 return 0;
 return arr[i] + help(arr,i+1);
}

Recursive:

– Recurrence is

 c + c + … + c

 for n times

Iterative:

4/2/2014 27

What about a binary version of sum?

Recurrence is T(n) = O(1) + 2T(n/2)

– 1 + 2 + 4 + 8 + … for log n times

– 2(log n) – 1 which is proportional to n (by definition of logarithm)

Easier explanation: it adds each number once while doing little else

“Obvious”: You can’t do better than O(n) – have to read whole array

int sum(int[] arr){
 return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return help(arr,lo,mid) + help(arr,mid,hi);
}

4/2/2014 28

Parallelism teaser

• But suppose we could do two recursive calls at the same time

– Like having a friend do half the work for you!

int sum(int[]arr){
 return help(arr,0,arr.length);
}
int help(int[]arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return help(arr,lo,mid) + help(arr,mid,hi);
}

 • If you have as many “friends of friends” as needed, the recurrence

is now T(n) = O(1) + 1T(n/2)

– O(log n) : same recurrence as for find

4/2/2014 29

Really common recurrences

Should know how to solve recurrences but also recognize some

really common ones:

 T(n) = O(1) + T(n-1) linear

 T(n) = O(1) + 2T(n/2) linear

 T(n) = O(1) + T(n/2) logarithmic

 T(n) = O(1) + 2T(n-1) exponential

 T(n) = O(n) + T(n-1) quadratic

 T(n) = O(n) + T(n/2) linear

 T(n) = O(n) + 2T(n/2) O(n log n)

Note big-Oh can also use more than one variable

• Example: can sum all elements of an n-by-m matrix in O(nm)

4/2/2014 30

