CSE 332 Data Abstractions, Spring 2014
Homework 4 – Part A

Due: Wednesday, April 30, 2014 at the BEGINNING of lecture. Your work should be readable as well as correct. You should refer to the written homework guidelines on the course website for a reminder about what is acceptable pseudocode. Part A of this homework has TWO terrific questions!! Your combined score from part A & part B will be your total HW4 score.

Problem 1: Algorithm Analysis
The methods below implement recursive algorithms that return the first index in an unsorted array to hold 17, or -1 if no such index exists.

```java
int first17_a(int[] array, int i) {
    if (i >= array.length)
        return -1;
    if (array[i]==17)
        return 0;
    if (first17_a(array,i+1) == -1)
        return -1;
    return 1 + first17_a(array,i+1);
}

int first17_b(int[] array, int i) {
    if (i >= array.length)
        return -1;
    if (array[i]==17)
        return 0;
    int x = first17_b(array,i+1);
    if (x == -1)
        return -1;
    return x + 1;
}
```

(a) What kind of input produces the worst-case running time in an absolute “number of operations” sense, not a big-O sense, for first17_a(arr,0)?

(b) For first17_a, give a recurrence relation, including a base case, describing the worst-case running time, where n is the length of the array (e.g. T(n) =…). You may use whatever constants you wish for constant-time work.

(c) Give a tight asymptotic (“big-Oh”) upper bound for the running time of first17_a(arr,0) given your answer to the previous question. That is, find a closed form for your recurrence relation. Show how you got your answer.

(d) What kind of input produces the worst case running time in an absolute “number of operations” sense, not a big-O sense, for first17_b(arr,0)?

(e) For first17_b, give a recurrence relation, including a base case, describing the worst-case running time, where n is the length of the array. You may use whatever constants you wish for constant-time work.

(f) Give a tight asymptotic (“big-Oh”) upper bound for the running time of first17_b(arr,0) given your answer to the previous question. That is, find a closed form for your recurrence relation. Show how you got your answer.

(g) Give a tight asymptotic (“big-Omega”) worst-case lower bound for the problem of finding the first 17 in an unsorted array (not a specific algorithm). Briefly justify your answer.

(See back of this page for remaining problems)
Problem 2: Deletion in Hashing
In this problem you will think about how lazy deletion is handled in open addressing hash tables.
(a) Suppose a hash table is accessed by open addressing and contains a cell X marked as “deleted”. Suppose that the next successful find hits and moves past cell X and finds the key in cell Y. Suppose we move the found key to cell X, mark cell X as “active” and mark cell Y as “open”. Suppose this policy is used for every find. Would you expect this to work better or worse compared to not modifying the table? Explain your answer.
(b) Suppose that instead of marking cell Y as “open” in the previous question, you mark it as “deleted” (it contains no value, but we treat it as a collision). Suppose this policy is used for every find. Would you expect this to work better or worse compared to not modifying the table? Explain your answer.