
CSE 332: Data Abstractions
Assignment #5
October 24, 2014
due: Monday, November 3, 12:30 p.m., before lecture begins

Bundles: The problems in each written homework assignment will be divided into 2 groups
(to facilitate distribution to grading TAs). You will turn in 2 corresponding bundles. Write your
full name in the upper left corner of each bundle’s top page, with your last name printed clearly in
CAPITAL LETTERS. Each bundle should be stapled separately. We don’t supply the stapler.

This week’s turnin bundles: (A) problems 1–2, (B) problems 3–4.

1. For this problem, you are using the hash function h(x) = x mod 13 with no rehashing. Insert
the integers 87, 19, 25, 55, 36, 46, 88, 7, 67, 21 (in this order) into an initially empty hash
table of size 13,

(a) using separate chaining.

(b) using open addressing with linear probing.

(c) using open addressing with double hashing, where h2(x) = 1 + (x mod 12).

(d) If a hash table is going to be this full (i.e., n ≈ m) most of the time, and you have
a hash function that spreads the entries over the hash table reasonably well, which of
these methods is likely to be fastest, and why?

2. The remove procedure of Figure 5.17 for deletion from a hash table with open addressing
uses “lazy deletion”.

(a) Starting from an empty hash table, give an example with as few dictionary operations as
possible that demonstrates that using “full deletion” can cause the hash table to return
the incorrect result for some operation. Make your example complete:

• State the table size, probing strategy, and hash function.
• Provide the sequence of operations and the state of the hash table after each oper-

ation.
• Demonstrate how lazy deletion leads to the correct result.
• State the incorrect result that will occur using full deletion.

(b) When rehashing to a larger table, do lazily-deleted items need to be included? Explain
your answer.

3. Solve the following recurrence for T (n):

T (1) = c

T (n) = 2T (n/2) + d

where c and d are constants independent of n.



4. (a) Given an acyclic directed graph G = (V,E) representing course prerequisites, write
an algorithm that computes a schedule for completing all the courses in the minimum
number of academic terms, with each course completed in the earliest possible term.
Your algorithm should assign a term number v.term to every vertex v, beginning with
term number 1. Assume that there is no limit on how many courses can be taken in any
given term and that every course is offered every term.

(b) Show the result of running your algorithm on the graph of Figure 9.3.

(c) What is the asymptotic running time of your algorithm in terms of n = |V | and e = |E|?
Justify your answer.


