CSE 332: Data Abstractions
Assignment #4

October 15, 2014

due: Friday, October 24, 10:00 p.m.

Implement the Dictionary class using splay trees. The details are below. You should be done with steps
1 and 2 within the first week, in order to leave enough time to do the experiments described in step 3.

1. Implement the procedures rotate(t,dir), splay(k), lookup(k), insert(k), concat(tl,t2), and
delete(k) as described in Section 4.5 and the handout Figures 7.17-7.20 from Lewis and Denenberg’s
textbook Data Structures & Their Algorithms. The procedure rotate(t,dir) does a single rotation
at node t with the child in direction dir (either L or R) and is used by splay. Implement lookup (k),
insert (k), concat(t1,t2), and delete(k) exactly as illustrated in the handout Figures 7.17-7.20,
even though there are other ways they can be done.

Also implement a procedure display that you can invoke after each Dictionary operation to display
the entire splay tree, so that you can watch its shape change. For the display, use preorder traversal
and the outline form as in Figure 4.7. Use 2 space characters for each additional indentation level in
that outline form, and be sure that a node’s left child is displayed above its right child. If a node has
only one nonempty child, it must be made clear whether it is a left or right child, so display a line
with the single character “—” to indicate the empty child. Likewise, use the single character “—” to
indicate an empty splay tree.

With the exception of splay, these procedures are very short and easy, so don’t be concerned about the
number of procedures you have to implement. The procedures lookup, insert, delete, and display
should all be public members of your Dictionary class. You are free to modify the interface and
implementation of the private members, as long as they accomplish their task by the same algorithms
as given in lecture.

The data type for the key field should be int. There is no need to have an info field for this assignment;
just keep in mind that in a real application there would be one. Since there is no info field, lookup
should simply return a boolean that is true if and only if the key was found.

For full credit, your nodes should not have a parent pointer. Instead, design splay recursively, so that
the recursion stack will do the job of remembering the path back to the root. In fact, the only fields
in each node should be the key, left child, and right child.

(Hint: Because the type of rotation done depends on the path to the splayed node X from the grandpar-
ent of X, you need some ancestral context after returning from a recursive call. Design your procedure
so that, after the recursive call returns, X is either at depth 1 or depth 2 from the current root. If it is
at depth 1, then simply return without doing any rotation; if at depth 2, then do the appropriate two
single rotations before returning. You will need the recursive procedure to store X or the key at X, in
order for the invoking procedure to find X from its current root. Notice that when all the recursion
ends, X may be left at depth 1 of the entire tree, so some zig cleanup may be necessary.)

(Antihint: It may occur to you that each recursive call could leap down 2 levels rather than 1, and
then do the obvious zig-zag or zig-zig rotation when the recursive call returns. This won’t work. The
problem is that, if the path length to the splayed node is odd, then you will do the zig rotation as
the very first rotation rather than the very last. This results in entirely different splay behavior from
the algorithm in the book, and I cannot give you any guarantee that the amortized analysis holds
anymore. )

To implement concat, you can use any convenient key from 75 in place of +oo. If Ty is empty, it is
not necessary to splay 77 at all.



2. Your program should be called RunDictionary and will take two filenames as arguments. The first
one is the input file. If it does not already exist, your program should throw an exception and exit.
The second one is the output file. It should be created if it does not exist and overwritten if it does.
The input file should consist of a sequence of Dictionary commands, one per line, each command being
of one of the three following forms:

insert n
delete n
lookup n

where n is an integer. The output file should contain the displayed splay trees after each command in
the input file is executed, starting from an initially empty Dictionary. Preceding each tree, repeat the
Dictionary command that resulted in that tree. There should be no blank lines in the output file. If
your program encounters errors in the input file (such as a word other than insert, delete, and lookup),
output an appropriate error message to the output file and quit your program. Attempting to delete a
key that is not in the Dictionary is not an error. We should be able to invoke your program from the
command line via the command

java RunDictionary infile.txt outfile.txt

Do not put your classes in packages, as that makes it harder for the graders to compile.

3. Run some experiments with your Dictionary package, trying to find a sequence of operations from an
initially empty tree that causes some of its operations to take Q(n) time (even though the average time
must be O(logn)). What happens to the shape of the tree after a few such expensive operations? Once
the tree is balanced, can you find some operations that cause it to become completely unbalanced?
Include a short report on these experiments in a README file.

Keep a counter of the total number T' of single rotations done over the course of all m Dictionary
operations in the input file. Since the running time is proportional to the number of single rotations,
T is a measure of total running time. Let n be the maximum size of the dictionary during these
operations. Run enough experiments with various large values of m and n so that you can produce the
following plot: graph T'/m on the vertical axis and log, n on the horizontal axis (equivalently, plot n
using a log scale for the horizontal axis). If everything goes well, these points should lie on (or below)
a roughly straight line whose slope will tell you the constant factor ¢ in the relation T < emlog, n.
Estimate ¢ and include this estimate in your README file. What I suggest for these experiments is that
your operations consist of n insertions followed by m — n lookups, where each of these lookups splays
one of the deepest nodes in the splay tree. If you do this, hopefully most of your plotted points will
lie close to the straight line. Choose n to be successive large powers of 2 and choose m to be a small
multiple of n. If you run into a java stack overflow, you can increase the allocated stack for the virtual
machine to 256 Mb with

java -Xss256m RunDictionary in.txt out.txt

Turn in a spreadsheet file with your plotted graph. You will want to turn off production of the output
file during these experiments, because it would be huge.

Turn in all your source, README, and spreadsheet files at

https://catalyst.uw.edu/collectit /dropbox/tompa,/32879



