
Worksheet 8 Solutions

CSE 332 Winter 2011

Section Worksheet

1) Parallel Prefix Sum

8 9 6 3 2 5 7 2

output

input

Goal: Output array needs to store sums of everything up to a certain

index. Meaning:

Output[i] = input[i]+input[i-1]+input[i-2]+…+input[0]

Figure out what information you

need

8 9 6 3 2 5 7 1

output

input

Range [0-8]

Sum

FromLeft

Start off at root with the entire range of
the problem (low=0, high=8). We need
to find the Sum and the FromLeft
value of the root, but we will do this in
two passes. First pass, go down and
split up the problem until we get to the
cutoff of one item (high-low=1)

Divide problem into parallel pieces

8 9 6 3 2 5 7 1

output

input

Range [0-8]

Sum

FromLeft

Range [0-4]

Sum

FromLeft

Range [4-8]

Sum

FromLeft

Range [2-4]

Sum

FromLeft

Range [6-8]

Sum

FromLeft

Range [0-2]

Sum

FromLeft

Range [4-6]

Sum

FromLeft

R [0-1]

S 8

L

R [1-2]

S 9

L

R [2-3]

S 06

L

R [3-4]

S 3

L

R [4-5]

S 2

L

R [5-6]

S 5

L

R [6-7]

S 7

L

R [7-8]

S 1

L

Now, starting from the bottom,

for each node, figure out the sum

of its children. Base case is

just the input itself.

1st pass, find sums going up.

8 9 6 3 2 5 7 1

output

input

Range [0-8]

Sum 41

FromLeft

Range [0-4]

Sum 26

FromLeft

Range [4-8]

Sum 15

FromLeft

Range [2-4]

Sum 9

FromLeft

Range [6-8]

Sum 8

FromLeft

Range [0-2]

Sum 17

FromLeft

Range [4-6]

Sum 7

FromLeft

R [0-1]

S 8

L

R [1-2]

S 9

L

R [2-3]

S 6

L

R [3-4]

S 3

L

R [4-5]

S 2

L

R [5-6]

S 5

L

R [6-7]

S 7

L

R [7-8]

S 1

L

As we go up,

each node

sums up its

children

2nd pass, fill out FromLeft going down

8 9 6 3 2 5 7 1

output

input

Range [0-8]

Sum 41

FromLeft 0

Range [0-4]

Sum 26

FromLeft

Range [4-8]

Sum 15

FromLeft

Range [2-4]

Sum 9

FromLeft

Range [6-8]

Sum 8

FromLeft

Range [0-2]

Sum 17

FromLeft

Range [4-6]

Sum 7

FromLeft

R [0-1]

S 8

L

R [1-2]

S 9

L

R [2-3]

S 6

L

R [3-4]

S 3

L

R [4-5]

S 2

L

R [5-6]

S 5

L

R [6-7]

S 7

L

R [7-8]

S 1

L

From left is the sum of everything

LEFT of the nodes’ range. Root node

has nothing to its left, since it

Is the entire range.

2nd pass, fill out FromLeft going down

8 9 6 3 2 5 7 1

output

input

Range [0-8]

Sum 41

FromLeft 0

Range [0-4]

Sum 26

FromLeft 0

Range [4-8]

Sum 15

FromLeft 26

Range [2-4]

Sum 9

FromLeft 17

Range [6-8]

Sum 8

FromLeft 33

Range [0-2]

Sum 17

FromLeft 0

Range [4-6]

Sum 7

FromLeft 26

R [0-1]

S 8

L 0

R [1-2]

S 9

L 8

R [2-3]

S 6

L 17

R [3-4]

S 3

L 23

R [4-5]

S 2

L 26

R [5-6]

S 5

L 28

R [6-7]

S 7

L 33

R [7-8]

S 1

L 40

Left child’s fromLeft is the same as

parent’s fromLeft. Right child’s

is parent.fromLeft + parent.left.sum

Finally, fill out output array

8 9 6 3 2 5 7 1

output 8 17 23 26 28 33 40 41

input

Range [0-8]

Sum 41

FromLeft 0

Range [0-4]

Sum 26

FromLeft 0

Range [4-8]

Sum 15

FromLeft 26

Range [2-4]

Sum 9

FromLeft 17

Range [6-8]

Sum 8

FromLeft 33

Range [0-2]

Sum 17

FromLeft 0

Range [4-6]

Sum 7

FromLeft 26

R [0-1]

S 8

L 0

R [1-2]

S 9

L 8

R [2-3]

S 6

L 17

R [3-4]

S 3

L 23

R [4-5]

S 2

L 26

R [5-6]

S 5

L 28

R [6-7]

S 7

L 33

R [7-8]

S 1

L 40

output[this.low] = this.sum + this.fromLeft

Basically, each node at the bottom

has all the info it needs to fill out

its output array cell without relying

on data from other nodes now!

2) Parallel Prefix FindMin

8 9 6 3 2 5 7 4

output

input

Output an array with the minimum value of all cells to its left.

So, output[i] = min(input[0],input[1],input[2],….input[i-1],input[i])

8 9 6 3 2 5 7 4

output

input

Range [0-8]

Min 2

FromLeft

Range [0-4]

Min 3

FromLeft

Range [4-8]

Min 2

FromLeft

Range [2-4]

Min 3

FromLeft

Range [6-8]

Min 4

FromLeft

Range [0-2]

Min 8

FromLeft

Range [4-6]

Min 2

FromLeft

R [0-1]

M 8

L

R [1-2]

M 9

L

R [2-3]

M 6

L

R [3-4]

M 3

L

R [4-5]

M 2

L

R [5-6]

M 5

L

R [6-7]

M 7

L

R [7-8]

M 4

L

Same as before, except this time, we want to store the node’s range, the min

of its children, and the min of everything to its left.

First pass, each node need only

look at its children to figure out

what its min should be, so fill

everything up from bottom up

8 9 6 3 2 5 7 4

output 8 8 6 3 2 2 2 2

input

Range [0-8]

Min 2

FromLeft none

Range [0-4]

Min 3

FromLeft none

Range [4-8]

Min 2

FromLeft 3

Range [2-4]

Min 3

FromLeft 8

Range [6-8]

Min 4

FromLeft 2

Range [0-2]

Min 8

FromLeft none

Range [4-6]

Min 2

FromLeft 3

R [0-1]

M 8

L none

R [1-2]

M 9

L 8

R [2-3]

M 6

L 8

R [3-4]

M 3

L 6

R [4-5]

M 2

L 3

R [5-6]

M 5

L 2

R [6-7]

M 7

L 2

R [7-8]

M 4

L 2

Second pass, we need to fill everything starting from the root going down.

Fill out the min value from

OUTSIDE each node’s range, in

the fromLeft variable.

Each right node looks at its

parent’s fromLeft and its sibling’s

min values.

3) Quicksort Recurrence

Relations
• Recall that sequential Quicksort consists

of

– O(1) Picking a pivot

– O(n) Partition data into

• A: Less than pivot

• B: Pivot

• C: Greater than pivot

– 2 T(n/2) – Recursively, sort each of the two

halves, A and C.

• T(n)=1+n+2T(n/2) = O(n log n)

To parallelize step 3 (recursion)

• Each partition can be done at the same,
so 2T(n/2) becomes time 1 T(n/2)

• Whole relation becomes: T(n)=1+n+T(n/2)

• Ignoring the constant time pivot-picking:

• T(n) = n + T(n/2)

Solve recurrence relation

• T(n) = n + T(n/2)

• T(n) = n + (n/2 + T(n/4))

• T(n) = n + (n/2 + (n/4 + T(n/8)))

• T(n) = n*(1+1/2+1/4+…+1/2k-1)+T(n/2k)

• T(n) = n*(1+1/2+1/4+…+1/2logn-1)+C

• Sum of geometric series (1+1/2+1/4+…)
converges to 2

• T(n) = 2n+C which is O(n), linear

Assume T(1)=C, that is,

that to sort 1 element

takes a constant C

units of time.

Substitute in base case T(1)=1 and solve for k:

n/2k=1

k = log n

To parallelize step 2, partitioning

• Do 2 filters, one to filter less-than-pivot
partition, one to filter greater-than-pivot
partition.

• Filter is work O(n), span O(log n)

• So total quicksort is now
(partition+recursion):

• T(n) = O(log n) + T(n/2)

Solve recurrence relation

• T(n) = log n + T(n/2) expand out recurrence

• T(n) = log n + (log(n/2) + T(n/4))

• T(n) = log n + log(n/2) + log(n/4) + T(n/8)

• T(n) = log n + log(n/2) + log(n/4) + log(n/8) + T(n/16)

• T(n) = log n +(log n – log 2) + (log n – log 4) + (log n – log 8) +
T(n/16)

• T(n) = 4*log n – log 2 – log 4 – log 8 + T(n/16)

• T(n) = 4*log n – 1 – 2 – 3 + T(n/2^4) because we’re doing log base 2

• T(n) = k*log n - (1+2+3+…+(k-1))+T(n/2^k)

• T(n) = k*log n – (k(k-1))/2 + T(n/2^k)

• As usual, assuming T(1)=C, set n/2^k=1, gives k=log n

• T(n) = (log n)*(log n) – ((log n-1)(log n))/2 + C

• T(n) = (log n)*(log n) – ((log n * log n)-log n)/2 + C

• Which is O(log n * log n)

