

CSE332: Data AbstractionsSection 2

Hyeln Kim Fall 2013

Section Agenda

- Bugs & Testing
- Induction Review
- Recurrence Relations
- Asymptotic Analysis
- Homework Tips & Questions

Software Bugs

- Error in a computer program
- Causes program to behave in unexpected ways

Why Testing?

Bugs can be costly

- Cost points in homework
- Can cost \$\$\$ and even life (Therac-25)

Interesting Bug References

List of bugs

http://en.wikipedia.org/wiki/List_of_software_bugs

- History's worst

http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=all

- Bugs of the month

http://www.gimpel.com/html/bugs.htm

- Reverse.java does not test your stack!!
 - Stack can still have lots of bugs when working perfectly with Reverse.java
 - Some extreme case in past quarter: it only worked with Reverse.java (Not a good stack!)

- Tips for Testing
 - Make sure program meets the spec
 - Test if each method works independently
 - Test if methods work together
 - Test for edge cases

- Make sure program meets the spec
 - What is wrong with this implementation?

```
public class ListStack implements DStack {
    private LinkedList<Double> myStack;
    public ListStack() {
         myStack = new LinkedList<Double>();
    public void push(double d) {
         myStack.add(d);
```

- Test for edge cases
 - Empty stack
 - Push after resizing
 - Anything else?

- Testing tools: JUnit Testing
 - Not required for Project 1
 - Required for Project 2
 - Covered in section later

Induction Review

Induction Review

Proof by Induction

- Prove that the **first** statement in the infinite sequence of statements is true (Base case)
- Prove that if any one statement in the infinite sequence of statements is true, then so is the next one.
 (Inductive case)

Induction Review

Proof by Induction

To prove statement P(n),

- Base Case:

Prove that P(1) is true

- Inductive Case:

Assuming P(k) is true, prove that P(k+1) is true

Recursively defines a Sequence

- Example:
$$T(n) = T(n-1) + 3$$
, $T(1) = 5$
^ Has $T(x)$ in definition

Solving Recurrence Relation

- Eliminate recursive part in definition
 - = Find "Closed Form"
- Example: T(n) = 3n + 2

Expansion Method example

- Solve
$$T(n) = T(n-1) + 2n - 1$$
, $T(1) = 1$

$$T(n) = T(n-1) + 2n - 1$$

$$T(n-1) = T([n-1]-1) + 2[n-1] - 1$$

$$= T(n-2) + 2(n-1) - 1$$

$$T(n-2) = T([n-2]-1) + 2[n-2] - 1$$

$$= T(n-3) + 2(n-2) - 1$$

Expansion Method example

T(n) = T(n-1) + 2n - 1

$$T(n-1) = T(n-2) + 2(n-1) - 1$$

$$T(n-2) = T(n-3) + 2(n-2) - 1$$

$$T(n) = [T(n-2) + 2(n-1) - 1] + 2n - 1$$

$$= T(n-2) + 2(n-1) + 2n - 2$$

$$T(n) = [T(n-3) + 2(n-2) - 1] + 2(n-1) + 2n - 2$$

= T(n-3) + 2(n-2) + 2(n-1) + 2n - 3

Expansion Method example

$$T(n) = T(n-1) + 2n - 1$$

$$T(n) = T(n-2) + 2(n-1) + 2n - 2$$

$$T(n) = T(n-3) + 2(n-2) + 2(n-1) + 2n - 3$$
...
$$T(n) = T(n-k) + [2(n-(k-1)) + ... + 2(n-1) + 2n] - k$$

$$= T(n-k) + [2(n-k+1) + ... + 2(n-1) + 2n] - k$$

Expansion Method example

$$T(n) = T(n-k) + [2(n-k+1) + ... + 2(n-1) + 2n] - k$$

When expanded all the way down, T(n-k) = T(1)n-k = 1, k = n-1

$$T(n) = T(n-[n-1]) + [2(n-[n-1]+1) + ... + 2(n-1) + 2n] - [n-1]$$

+ 2n] - [n-1]
= T(1) + [2(2) + ... + 2(n-1) + 2n] - n + 1

Expansion Method example

$$T(n) = T(1) + [2(2) + ... + 2(n-1) + 2n] - n + 1$$

$$= T(1) + 2[2 + ... + (n-1) + n] - n + 1$$

$$= T(1) + 2[(n+1)(n/2) - 1] - n + 1$$

$$= T(1) + (n+1)(n) - 2 - n + 1$$

$$= T(1) + (n^2+n) - n - 1$$

$$= T(1) + n^2 - 1$$

$$= 1 + n^2 - 1$$

$$= n^2$$

Expansion Method example Check it!

$$T(n) = T(n-1) + 2n - 1, T(1) = 1$$

 $T(n) = n^2$

$$T(1) = 1$$
 same as 1^2
 $T(2) = T(1) + 2(2) - 1 = 4$ same as 2^2
 $T(3) = T(2) + 2(3) - 1 = 9$ same as 3^2
 $T(4) = T(3) + 2(4) - 1 = 16$ same as 4^2

For Homework

Remember to show steps!!

- Correct answer with no steps gets no credit
 - a) Show at least 2 expansions of T(n)
 - b) At least 2 representations of T(n), using a)
 - c) Writing T(n) in terms of k, using b)
 - d) How you solved for k
 - e) Plug in k and get the closed form

Describe Limiting behavior of F(n)

- Characterize growth rate of F(n)
- Use O(g(n)), $\Omega(g(n))$, O(g(n)) for set of functions with asymptotic behavior \leq , \geq , \leq & \geq to O(g(n))

Upper Bound: O(n)

 $f(n) \in O(g(n))$ if and only if there exist positive constants c and n_0 such that $f(n) \le c*g(n)$ for all $n_0 \le n$

Lower Bound: Ω(n)

 $f(n) \in \Omega(g(n))$ if and only if there exist positive constants c and n_0 such that $c*g(n) \le f(n)$ for all $n_0 \le n$

Tight Bound: Θ(n)

 $f(n) \in \Theta(g(n))$ if and only if $f(n) \in \Omega(g(n))$ and $f(n) \in O(g(n))$

- Ordering Growth rates (k = constant)
 - Ignore Low-Order terms & Coefficients

O(k) constant

O(log n) logarithmic

O(n) linear

O(n^k) polynomial

 $O(k^n)$ exponential (k > 1)

Increasing Growth rate

Ordering Growth rates

Ordering Growth rates (k, b = constant)

```
- \log^k n \in O(n^b) \text{ if } 1 < k \& 0 < b
```

$$- n^k \in O(b^n) \text{ if } 0 < k \& 1 < b$$

Ordering Example

2n ¹⁰⁰ + 10n	n ¹⁰⁰	4
$2^{n/100} + 2^{n/270}$	2 ^{n/100}	5
1000n + log ⁸ n	n	3
23785n ^{1/2}	n ^{1/2}	2
$1000 \log^{10} n + 1^{n/300}$	log ¹⁰ n	1

- Proof Example: $f(n) \in O(g(n))$
 - Prove or disprove nlog $n \in O(3n)$

```
nlog n \in O(3n), then by definition of Big-O nlog n \leq c*(3n), for 0 < c \&\& 0 < n_0 \leq n (1/3)log n \leq c
```

but as $n \to \infty$, log $n \to \infty$ Finite constant c always greater than log n cannot exist, no matter what n_0 we choose nlog $n \notin O(3n)$

Problem #1

Use formula in the book
 (You don't have to derive it by yourself)

Problem #2

- Use following rules:

1.
$$\left| \frac{\left| \frac{x}{m} \right|}{n} \right| = \left| \frac{x}{mn} \right|$$
 which means $\left| \frac{\left| \frac{n}{2} \right|}{2} \right| = \left| \frac{n}{2^2} \right|$

2. $\lfloor x \rfloor = m$ if and only if $m \le x < m+1$

- Problem #3
 - $f(n) \times 10^{-6} sec \le t sec$, solve for n
- Problem #4 <= Not in this HW
 - Remember that when you are proving P(k+1), you are assuming P(k) no matter how silly it is!
 - Find flaw in inductive reasoning

Problem #5

 Use definitions and show you can/cannot find the constant c

Problem #6

- Analyze runtime of each loop & merge when appropriate
- Practice finding exact runtime when you can
- Think about maximum iteration of each loop