CSE332: Data Abstractions

Lecture 23: Minimum Spanning Trees

Ruth Anderson
Autumn 2013

“Scheduling note”

* “We now return to our interrupted program” on graphs
— Last “graph lecture” was lecture 16
« Shortest-path problem
* Dijkstra’s algorithm for graphs with non-negative weights

* Why this strange schedule?

— Needed to do parallelism and concurrency in time for project
3 and homeworks 6 and 7

— But cannot delay all of graphs because of the CSE312 co-
requisite

« So: not the most logical order, but hopefully not a big deal

11/27/2013 3

Minimum Spanning Trees
Given an undirected graph G=(V,E), find a graph G’=(V, E’) such
that:
— E’is a subset of E
- |[E’l=1V]-1
— G’ is connected

- E Cuv IS minimal

(u,v)eE’

G’ is a minimum
spanning tree.

Applications:

« Example: Electrical wiring for a house or clock wires on a chip

« Example: A road network if you cared about asphalt cost rather
than travel time

11/27/2013

Find the MST

11/27/2013 5

Two Different Approaches

Prim’s Algorithm Kruskals’s Algorithm
Almost identical to Dijkstra’s Completely different!

11/27/2013

Two Different Approaches

Prim’s Algorithm Kruskals’s Algorithm
Almost identical to Dijkstra’s Completely different!

One node, grow greedily Forest of MSTs,
Union them together.

I wonder how to union...

11/27/2013

Prim’s algorithm

Idea: Grow a tree by picking a vertex from the unknown set that
has the smallest cost. Here cost = cost of the edge that
connects that vertex to the known set. Pick the vertex with the
Smallest cost that connects “known” to “unknown.”

A node-based greedy algorithm
Builds MST by greedily adding nodes

G T T —
(‘* V

known

11/27/2013 8

Prim’s Algorithm vs. Dijkstra’s

Recall:

Dijkstra picked the unknown vertex with smallest cost where
cost = distance to the source.

Prim’s pick the unknown vertex with smallest cost where
cost = distance from this vertex to the known set (in other words,
the cost of the smallest edge connecting this vertex to the known
set)

— Otherwise identical
— Compare to slides in lecture 16!

11/27/2013 9

Prim’s Algorithm for MST

1. Foreachnode v, set v.cost = 0 and v.known = false

2. Choose any node v. (this is like your “start” vertex in Dijkstra)
a) Mark v as known

b) For each edge (wv,u) with weight w:
setu.cost=wand u.prev=v

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, wv.prev) to output (the MST)
c) Foreachedge (v,u) with weight w,
i1f(w < u.cost) {
u.cost = w;

u.prev = v;

11/27/2013 10

Example: Find MST using Prim’s

vertex | known? cost prev
A ??
B ??
C ?7?
D ??
E ??
F ??
G ?7?

11/27/2013 11

Example: Find MST using Prim’s

vertex | known? cost prev
A Y 0
B 2 A
C 2 A
D 1 A
E ??
F ??
G ?7?

11/27/2013 12

Example: Find MST using Prim’s

vertex | known? cost prev

A Y 0

B 2 A
C 1 D
D Y 1 A
E 1 D
F 6 D
G 5 D

11/27/2013 13

Example: Find MST using Prim’s

vertex | known? cost prev

A Y 0

B 2 A
C Y 1 D
D Y 1 A
E 1 D
F 2 C
G 5 D

11/27/2013 14

Example: Find MST using Prim’s

vertex | known? cost prev

A Y 0

B 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

11/27/2013 15

Example: Find MST using Prim’s

vertex | known? cost prev

A Y 0

B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

11/27/2013 16

Example: Find MST using Prim’s

vertex | known? cost prev

A Y 0

B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G 3 E

11/27/2013 17

Example: Find MST using Prim’s

vertex | known? cost prev

A Y 0

B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G Y 3 E

11/27/2013 18

Find MST using
Prim’s

N

)&
N

V | Kwn |Distance path
vl
V2

|.A

V3
v4
V5

\V/§)
v7 Total Cost:

Order Declared Known:
Vl

11/27/2013 19

Prim’s Analysis

» Correctness ??
— A Dbit tricky
— Intuitively similar to Dijkstra
— Might return to this time permitting (unlikely)

* Run-time

— Same as Dijkstra
— O(]E|1og |V|) using a priority queue

11/27/2013

20

Kruskal’'s MST Algorithm

ldea: Grow a forest out of edges that do not create a cycle. Pick an
edge with the smallest weight.

G=(V,E)

(g,

11/27/2013 21

__
VvV
I

Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
. empty MST
. all vertices marked unconnected
« all edges unmarked
2. While there are still unmarked edges
a. Pick the lowest cost edge (u,v) and mark it

b. Ifuandwv are not already connected, add (u,v) to the MST
and mark u and v as connected to each other

11/27/2013 22

Aside: Union-Find aka Disjoint Set ADT

 Union(x,y) — take the union of two sets named x and y
— Given sets: {3,5,7}, {4,2,8}, {9}, {1,6}
— Union(5,1)
Result: {3,5,7,1,6}, {4,2,8}, {9},
To perform the union operation, we replace sets x and y by (x Uy)

« Find(x) — return the name of the set containing X.
— Given sets: {3,5,7,1,6}, {4,2,8}, {9},
— Find(1) returns 5
— Find(4) returns 8

 We can do Union in constant time.
 We can get Find to be amortized constant time

(worst case O(log n) for an individual Find operation).
11/27/2013 23

Kruskal’s pseudo code

void Graph: :kruskal () {
int edgesAccepted = 0;
DisjSet s (NUM VERTICES) ;

Sort of ignore this loop in calc run-time... [E| heap ops
while (edgesAccepted < NUM VERTICES - 1) {

e = smallest weight edge not deleted yet;

// edge e = (u, v)

uset = s.find(u);, «— 2|E| finds
vset = s.find(v) ;
if (uset !'= vset) {
edgesAccepted++;
s.unionSets (uset, vset);“~~~~~
} V| unions

11/27/2013 24

Kruskal’s pseudo code On heap of

edges
void Graph: :kruskal () { Deletemin =
int edgesAccepted = 0; log |E]
DisjSet s (NUM VERTICES) ;
Sort of ignore this loop in calc run-time... |E| heap ops
while (edgesAccepted < NUM VERTICES - 1) {
e = smallest weight edge not deleted yet;
// edge e = (u, v)
uset = s.find(u),; € 21E| finds
vset = s.find(v) ; | | Oni fOI_‘ e?ﬁh
if (uset !'= vset) { Vver egln €
edgesAccepted++; Ein de—?g |V|
s.unionSets (uset, wvset); J
\ -
} |V| unions
} |Ellog |E| + 2IE[log|V]+|V]| Union = O(1)

b O(|E[log|E| + |E[-O(1)) = O(|E|log|E[) = O(|E|log|V])
b/c log |E| < log|V|? = 2log|V|

11/27/2013 25

Find MST using Kruskal’s

Total Cost:

 Now find the MST using Prim’s method.
« Under what conditions will these methods give the same result?

11/27/2013 26

Example: Find MST using Kruskal’s

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (AC)

3. (E,GQ)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

11/27/2013 27

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (AC)

3. (E,GQ)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

11/27/2013 28

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (AD), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (AC)

3. (E,GQ)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

11/27/2013 29

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (AD), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (AC)

3. (E,GQ)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

11/27/2013 30

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (AC)

3. (E,GQ)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

11/27/2013 31

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
2. (A,B), (C,F), (AC)

3. (E,GQ)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

11/27/2013 32

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
2. (A,B), (C,F), (AC)

3. (E,GQ)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

11/27/2013 33

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
2. (A,B), (C,F), (A,C

3. (E,GQ)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

11/27/2013 34

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
2. (A,B), (C,F), (A,C

3: (E,G)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

11/27/2013 35

Correctness

Kruskal’s algorithm is clever, simple, and efficient
— But does it generate a minimum spanning tree?
— How can we prove it?

First: it generates a spanning tree

— Intuition: Graph started connected and we added every edge
that did not create a cycle

— Proof by contradiction: Suppose u and v are disconnected in
Kruskal’s result. Then there’s a path from u to v in the initial

graph with an edge we could add without creating a cycle.
But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

11/27/2013 36

The inductive proof set-up

Let F (stands for “forest”) be the set of edges Kruskal has added at
some point during its execution.

Claim: F is a subset of one or more MSTs for the graph
(Therefore, once |F|=|V|-1, we have an MST.)

Proof: By induction on |F|

Base case: |F|=0: The empty set is a subset of all MSTs

Inductive case: |F|=k+1: By induction, before adding the (k+1)t
edge (call it e), there was some MST T suchthat F-{e} c T ...

11/27/2013 37

Staying a subset of some MST

Claim: F is a subset of one or
more MSTs for the graph

Sofar. F-{e}cT:

Two disjoint cases:

 If{e} < T: ThenF c T and we're done

» Else e forms a cycle with some simple path (callitp) in T
— Must be since T is a spanning tree

11/27/2013 38

Staying a subset of some MST
Claim: F is a subset of one or /

more MSTs for the graph

Sofar. F-{e} cTand
e formsacyclewithpcT \

 There must be an edge e2 on p suchthate2is notinF
— Else Kruskal would not have added e

« Claim: e2.weight == e.weight

11/27/2013 39

Staying a subset of some MST
Claim: F is a subset of one or /

more MSTs for the graph

Sofar: F-{e}cT
eformsacyclewithpcT
e2onpisnotinF \

« Claim: e2.weight == e.weight
— If e2.weight > e.weight, then T is not an MST because
T-{e2}+{e} Is a spanning tree with lower cost: contradiction
— If e2.weight < e.weight, then Kruskal would have already
considered e2. It would have added it since T has no cycles
and F-{e} c T. ButeZ2is notin F: contradiction

11/27/2013 40

Staying a subset of some MST
Claim: F is a subset of one or /

more MSTs for the graph

Sofar: F-{e}cT

eformsacyclewithpcT
e2onpisnotinF \

e2.weight == e.weight

 Claim: T-{e2}+{e}is an MST
— It's a spanning tree because p-{e2}+{e} connects the same
nodes as p
— It's minimal because its cost equals cost of T, an MST
 Since F c T-{e2}+{e}, Fis asubset of one or more MSTs
Done.
11/27/2013 41

