
CSE 332: Data Abstractions

Lecture 23:

Data Races and Memory Reordering

Deadlock

 Readers/Writer Locks

Condition Variables

Ruth Anderson

Autumn 2013

Outline

Done:

• Programming with locks and critical sections

• Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

• Why you must avoid data races (memory reorderings)

• Another common error: Deadlock

• Other common facilities useful for shared-memory concurrency

– Readers/writer locks

– Condition variables, or, more generally, passive waiting

3 11/22/2013

Motivating memory-model issues

Tricky and surprisingly wrong unsynchronized concurrent code

4

class C {

 private int x = 0;

 private int y = 0;

 void f() {

 x = 1;

 y = 1;

 }

 void g() {

 int a = y;

 int b = x;

 assert(b >= a);

 }

}

First understand why it looks like

the assertion cannot fail:

• Easy case: call to g ends before

any call to f starts

• Easy case: at least one call to f

completes before call to g starts

• If calls to f and g interleave…

11/22/2013

Interleavings

5 11/22/2013

There is no interleaving of f and g where the assertion fails

– Proof #1: Exhaustively consider all possible orderings of

access to shared memory (there are 6)

– Proof #2: If !(b>=a), then a==1 and b==0.

But if a==1, then y=1 happened before a=y.

Because programs execute in order:
 a=y happened before b=x and x=1 happened before y=1.

So by transitivity, b==1. Contradiction.

x = 1;

y = 1;

int a = y;

int b = x;

assert(b >= a);

Thread 1: f Thread 2: g

Wrong

However, the code has a data race

– Two actually

– Recall: data race: unsynchronized read/write or write/write of

same location

If code has data races, you cannot reason about it with interleavings!

– That is simply the rules of Java (and C, C++, C#, …)

– (Else would slow down all programs just to “help” programs with

data races, and that was deemed a bad engineering trade-off

when designing the languages/compilers/hardware)

– So the assertion can fail

Recall Guideline #0: No data races

6 11/22/2013

Why

For performance reasons, the compiler and the hardware often

reorder memory operations

– Take a compiler or computer architecture course to learn why

7

x = 1;

y = 1;

int a = y;

int b = x;

assert(b >= a);

Thread 1: f Thread 2: g

Of course, you cannot just let them reorder anything they want

• Each thread executes in order after all!

• Consider: x=17; y=x;

11/22/2013

The grand compromise

The compiler/hardware will never perform a memory reordering that

affects the result of a single-threaded program

The compiler/hardware will never perform a memory reordering that

affects the result of a data-race-free multi-threaded program

So: If no interleaving of your program has a data race, then you can

forget about all this reordering nonsense: the result will be

equivalent to some interleaving

Your job: Avoid data races

Compiler/hardware job: Give illusion of interleaving if you do your job

8 11/22/2013

Fixing our example

• Naturally, we can use synchronization to avoid data races

– Then, indeed, the assertion cannot fail

9

class C {

 private int x = 0;

 private int y = 0;

 void f() {

 synchronized(this) { x = 1; }

 synchronized(this) { y = 1; }

 }

 void g() {

 int a, b;

 synchronized(this) { a = y; }

 synchronized(this) { b = x; }

 assert(b >= a);

 }

}
11/22/2013

A second fix

• Java has volatile fields: accesses do not count as data races

• Implementation: slower than regular fields, faster than locks

• Really for experts: avoid them; use standard libraries instead

• And why do you need code like this anyway?

10

class C {

 private volatile int x = 0;

 private volatile int y = 0;

 void f() {

 x = 1;

 y = 1;

 }

 void g() {

 int a = y;

 int b = x;

 assert(b >= a);

 }

}
11/22/2013

Code that is wrong

• Here is a more realistic example of code that is wrong

– No guarantee Thread 2 will ever stop (there’s a data race)

– But honestly it will “likely work in practice”

11

class C {

 boolean stop = false;

 void f() {

 while(!stop) {

 // draw a monster

 }

 }

 void g() {

 stop = didUserQuit();

 }

}

Thread 1: f()

Thread 2: g()

11/22/2013

Outline

Done:

• Programming with locks and critical sections

• Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

• Why you must avoid data races (memory reorderings)

• Another common error: Deadlock

• Other common facilities useful for shared-memory concurrency

– Readers/writer locks

– Condition variables

12 11/22/2013

Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

13

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt,

 BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

Potential problems?

11/22/2013

Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

14

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt,

 BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

Notice during call to a.deposit, thread holds two locks

– Need to investigate when this may be a problem

11/22/2013

The Deadlock

15

acquire lock for x

do withdraw from x

block on lock for y

acquire lock for y

do withdraw from y

block on lock for x

Thread 1: x.transferTo(1,y)

T
im

e

Suppose x and y are static fields holding accounts

Thread 2: y.transferTo(1,x)

11/22/2013

Ex: The Dining Philosophers

• 5 philosophers go out to dinner together at an Italian restaurant

• Sit at a round table; one fork per setting

• When the spaghetti comes, each philosopher proceeds to grab their

right fork, then their left fork, then eats

• ‘Locking’ for each fork results in a deadlock

11/22/2013 16

Deadlock, in general

A deadlock occurs when there are threads T1, …, Tn such that:

• For i=1,..,n-1, Ti is waiting for a resource held by T(i+1)

• Tn is waiting for a resource held by T1

In other words, there is a cycle of waiting

– Can formalize as a graph of dependencies with cycles bad

Deadlock avoidance in programming amounts to techniques to

ensure a cycle can never arise

17 11/22/2013

Back to our example

Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not synchronized

– Exposes intermediate state after withdraw before deposit

– May be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for all accounts allowing

transfers between them

– Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always acquire

locks in the same order

– Entire program should obey this order to avoid cycles

– Code acquiring only one lock can ignore the order

18 11/22/2013

Ordering locks

19

class BankAccount {

 …

 private int acctNumber; // must be unique

 void transferTo(int amt, BankAccount a) {

 if(this.acctNumber < a.acctNumber)

 synchronized(this) {

 synchronized(a) {

 this.withdraw(amt);

 a.deposit(amt);

 }}

 else

 synchronized(a) {

 synchronized(this) {

 this.withdraw(amt);

 a.deposit(amt);

 }}

 }

}
11/22/2013

Another example

From the Java standard library

20

class StringBuffer {

 private int count;

 private char[] value;

 …

 synchronized append(StringBuffer sb) {

 int len = sb.length();

 if(this.count + len > this.value.length)

 this.expand(…);

 sb.getChars(0,len,this.value,this.count);

 }

 synchronized getChars(int x, int, y,

 char[] a, int z) {

 “copy this.value[x..y] into a starting at z”

 }

}

11/22/2013

Two problems

Problem #1: Lock for sb is not held between calls to sb.length

and sb.getChars

– So sb could get longer

– Would cause append to throw an ArrayBoundsException

Problem #2: Deadlock potential if two threads try to append in

opposite directions, just like in the bank-account first example

Not easy to fix both problems without extra copying:

– Do not want unique ids on every StringBuffer

– Do not want one lock for all StringBuffer objects

Actual Java library: fixed neither (left code as is; changed javadoc)

– Up to clients to avoid such situations with own protocols

21 11/22/2013

Perspective

• Code like account-transfer and string-buffer append are difficult

to deal with for deadlock

• Easier case: different types of objects

– Can document a fixed order among types

– Example: “When moving an item from the hashtable to the

work queue, never try to acquire the queue lock while

holding the hashtable lock”

• Easier case: objects are in an acyclic structure

– Can use the data structure to determine a fixed order

– Example: “If holding a tree node’s lock, do not acquire other

tree nodes’ locks unless they are children in the tree”

22 11/22/2013

Outline

Done:

• Programming with locks and critical sections

• Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

• Why you must avoid data races (memory reorderings)

• Another common error: Deadlock

• Other common facilities useful for shared-memory concurrency

– Readers/writer locks

– Condition variables

23 11/22/2013

Reading vs. writing

Recall:

– Multiple concurrent reads of same memory: Not a problem

– Multiple concurrent writes of same memory: Problem

– Multiple concurrent read & write of same memory: Problem

So far:

– If concurrent write/write or read/write might occur, use

synchronization to ensure one-thread-at-a-time

But this is unnecessarily conservative:

– Could still allow multiple simultaneous readers!

24 11/22/2013

Example

Consider a hashtable with one coarse-grained lock

– So only one thread can perform operations at a time

– Won’t allow simultaneous reads, even though it’s ok

conceptually

But suppose:

– There are many simultaneous lookup operations

– insert operations are very rare

– It’d be nice to support multiple reads; we’d do lots of waiting

otherwise

Note: Important that lookup does not actually mutate shared

memory, like a move-to-front list operation would

25 11/22/2013

Readers/writer locks

A new synchronization ADT: The readers/writer lock

• A lock’s states fall into three categories:

– “not held”

– “held for writing” by one thread

– “held for reading” by one or more threads

• new: make a new lock, initially “not held”

• acquire_write: block if currently “held for reading” or “held for

writing”, else make “held for writing”

• release_write: make “not held”

• acquire_read: block if currently “held for writing”, else

make/keep “held for reading” and increment readers count

• release_read: decrement readers count, if 0, make “not held”

26

0 writers 1

0 readers
writers*readers==0

11/22/2013

Pseudocode example (not Java)

27

class Hashtable<K,V> {

 …

 // coarse-grained, one lock for table

 RWLock lk = new RWLock();

 V lookup(K key) {

 int bucket = hasher(key);

 lk.acquire_read();

 … read array[bucket] …

 lk.release_read();

 }

 void insert(K key, V val) {

 int bucket = hasher(key);

 lk.acquire_write();

 … write array[bucket] …

 lk.release_write();

 }

}

11/22/2013

Readers/writer lock details

• A readers/writer lock implementation (“not our problem”) usually

gives priority to writers:

– Once a writer blocks, no readers arriving later will get the

lock before the writer

– Otherwise an insert could starve

• That is, it could wait indefinitely because of continuous

stream of read requests

• Re-entrant?

– Mostly an orthogonal issue

– But some libraries support upgrading from reader to writer

• Why not use readers/writer locks with more fine-grained locking,

like on each bucket?

– Not wrong, but likely not worth it due to low contention

 28 11/22/2013

In Java

Java’s synchronized statement does not support readers/writer

Instead, library

java.util.concurrent.locks.ReentrantReadWriteLock

• Different interface: methods readLock and writeLock return

objects that themselves have lock and unlock methods

• Does not have writer priority or reader-to-writer upgrading

– Always read the documentation

29 11/22/2013

Outline

Done:

• Programming with locks and critical sections

• Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

• Why you must avoid data races (memory reorderings)

• Another common error: Deadlock

• Other common facilities useful for shared-memory concurrency

– Readers/writer locks

– Condition variables

30 11/22/2013

Motivating Condition Variables:

Producers and Consumers

Another means of allowing concurrent access is the condition

variable; before we get into that though, lets look at a situation

where we’d need one:

• Imagine we have several producer threads and several

consumer threads

– Producers do work, toss their results into a buffer

– Consumers take results off of buffer as they come and

process them

– Ex: Multi-step computation

f e d c buffer

back front

producer(s)

enqueue

consumer(s)

dequeue

11/22/2013 31

Motivating Condition Variables:

Producers and Consumers

• Cooking analogy: Team one peels potatoes, team two

takes those and slices them up

– When a member of team one finishes peeling, they toss the

potato into a tub

– Members of team two pull potatoes out of the tub and dice

them up

f e d c buffer

back front

producer(s)

enqueue

consumer(s)

dequeue

11/22/2013 32

Motivating Condition Variables:

Producers and Consumers

• If the buffer is empty, consumers have to wait for producers

to produce more data

• If buffer gets full, producers have to wait for consumers to

consume some data and clear space

• We’ll need to synchronize access; why?

– Data race; simultaneous read/write or write/write to back/front

f e d c buffer

back front

producer(s)

enqueue

consumer(s)

dequeue

11/22/2013 33

Motivating Condition Variables

To motivate condition variables, consider the canonical example of a

bounded buffer for sharing work among threads

Bounded buffer: A queue with a fixed size

– (Unbounded still needs a condition variable, but 1 instead of 2)

For sharing work – think an assembly line:

– Producer thread(s) do some work and enqueue result objects

– Consumer thread(s) dequeue objects and do next stage

– Must synchronize access to the queue

 34

f e d c buffer

back front

producer(s)

enqueue

consumer(s)

dequeue

11/22/2013

Code, attempt 1

35

class Buffer<E> {

 E[] array = (E[])new Object[SIZE];

 … // front, back fields, isEmpty, isFull methods

 synchronized void enqueue(E elt) {

 if(isFull())

 ???

 else

 … add to array and adjust back …

 }

 synchronized E dequeue()

 if(isEmpty())

 ???

 else

 … take from array and adjust front …

 }

}

11/22/2013

First

attempt

class Buffer<E> {

 E[] array = (E[])new Object[SIZE];

 … // front, back fields, isEmpty, isFull methods

 synchronized void enqueue(E elt) {

 if(isFull())

 ???

 else

 … add to array and adjust back …

 }

 synchronized E dequeue() {

 if(isEmpty())

 ???

 else

 … take from array and adjust front …

 }

}

• What to do for ??? One approach; if buffer is full on enqueue, or

empty on dequeue, throw an exception

– Not what we want here; w/ multiple threads taking & giving, these
will be common occurrences – should not handle like errors

– Common, and only temporary; will only be empty/full briefly

– Instead, we want threads to be pause until it can proceed

11/22/2013 36

Waiting

• enqueue to a full buffer should not raise an exception

– Wait until there is room

• dequeue from an empty buffer should not raise an exception

– Wait until there is data

Bad approach is to spin (wasted work and keep grabbing lock)

37

void enqueue(E elt) {

 while(true) {

 synchronized(this) {

 if(isFull()) continue;

 … add to array and adjust back …

 return;

}}}

// dequeue similar

11/22/2013

What we want

• Better would be for a thread to wait until it can proceed

– Be notified when it should try again

– Thread suspended until then; in meantime, other threads run

– While waiting, lock is released; will be re-acquired later by one

notified thread

– Upon being notified, thread just drops in to see what condition it’s

condition is in

– Team two members work on something else until they’re told more

potatoes are ready

– Less contention for lock, and time waiting spent more efficiently

38 11/22/2013

Condition Variables

• Like locks & threads, not something you can implement on your own

– Language or library gives it to you

• An ADT that supports this: condition variable

– Informs waiting thread(s) when the condition that causes it/them

to wait has varied

• Terminology not completely standard; will mostly stick with Java

39 11/22/2013

Java approach: not quite right

40

class Buffer<E> {

 …

 synchronized void enqueue(E elt) {

 if(isFull())

 this.wait(); // releases lock and waits

 add to array and adjust back

 if(buffer was empty)

 this.notify(); // wake somebody up

 }

 synchronized E dequeue() {

 if(isEmpty())

 this.wait(); // releases lock and waits

 take from array and adjust front

 if(buffer was full)

 this.notify(); // wake somebody up

 }

}
11/22/2013

Key ideas

• Java weirdness: every object “is” a condition variable (and a lock)

– other languages/libraries often make them separate

• wait:

– “register” running thread as interested in being woken up

– then atomically: release the lock and block

– when execution resumes, thread again holds the lock

• notify:

– pick one waiting thread and wake it up

– no guarantee woken up thread runs next, just that it is no

longer blocked on the condition – now waiting for the lock

– if no thread is waiting, then do nothing

41 11/22/2013

Bug #1

Between the time a thread is notified and it re-acquires the lock, the

condition can become false again!

42

synchronized void enqueue(E elt){

 if(isFull())

 this.wait();

 add to array and adjust back

 …

}

if(isFull())

 this.wait();

add to array

T
im

e

Thread 2 (dequeue) Thread 1 (enqueue)

take from array

if(was full)
this.notify();

make full again

Thread 3 (enqueue)

11/22/2013

Bug fix #1

Guideline: Always re-check the condition after re-gaining the lock

– If condition still not met, go back to waiting

– In fact, for obscure reasons, Java is technically allowed to

notify a thread spuriously (i.e., for no reason)

43

synchronized void enqueue(E elt) {

 while(isFull())

 this.wait();

 …

}

synchronized E dequeue() {

 while(isEmpty())

 this.wait();

 …

}

11/22/2013

Bug #2
• If multiple threads are waiting, we wake up only one

– Sure only one can do work now, but can’t forget the others!

– Works for the most part, but what if 2 are waiting to enqueue, and

two quick dequeues occur before either gets to go?

– We’d only notify once; other thread would wait forever

44

while(isFull())

 this.wait();

…

T
im

e

Thread 2 (enqueue) Thread 1 (enqueue)

// dequeue #1

if(buffer was full)

 this.notify();

// dequeue #2

if(buffer was full)

 this.notify();

Thread 3 (dequeues)

while(isFull())

 this.wait();

…

11/22/2013

Bug fix #2

notifyAll wakes up all current waiters on the condition variable

Guideline: If in any doubt, use notifyAll

– Wasteful waking is better than never waking up

• So why does notify exist?

– Well, it is faster when correct…
45

synchronized void enqueue(E elt) {

 …

 if(buffer was empty)

 this.notifyAll(); // wake everybody up

}

synchronized E dequeue() {

 …

 if(buffer was full)

 this.notifyAll(); // wake everybody up

}

11/22/2013

Alternate approach

• An alternative is to call notify (not notifyAll) on every

enqueue / dequeue, not just when the buffer was empty / full

– Easy: just remove the if statement

• Alas, makes our code subtly wrong since it is technically possible
that an enqueue and a dequeue are both waiting

– See notes for the step-by-step details of how this can happen

• Works fine if buffer is unbounded since then only dequeuers wait

46 11/22/2013

Alternate approach fixed

• The alternate approach works if the enqueuers and dequeuers

wait on different condition variables

– But for mutual exclusion both condition variables must be

associated with the same lock

• Java’s “everything is a lock / condition variable” does not support

this: each condition variable is associated with itself

• Instead, Java has classes in java.util.concurrent.locks

for when you want multiple conditions with one lock

– class ReentrantLock has a method newCondition that

returns a new Condition object associated with the lock

– See the documentation if curious

47 11/22/2013

Last condition-variable comments

• notify/notifyAll often called signal/broadcast, also

called pulse/pulseAll

• Condition variables are subtle and harder to use than locks

• But when you need them, you need them

– Spinning and other work-arounds do not work well

• Fortunately, like most things in a data-structures course, the

common use-cases are provided in libraries written by experts

– Example:
java.util.concurrent.ArrayBlockingQueue<E>

– All uses of condition variables hidden in the library; client just
calls put and take

48 11/22/2013

Concurrency summary

• Access to shared resources introduces new kinds of bugs

– Data races

– Critical sections too small

– Critical sections use wrong locks

– Deadlocks

• Requires synchronization

– Locks for mutual exclusion (common, various flavors)

– Condition variables for signaling others (less common)

• Guidelines for correct use help avoid common pitfalls

• Not clear shared-memory is worth the pain

– But other models (e.g., message passing) not a panacea

49 11/22/2013

