CSE 332: Data Abstractions

Lecture 15: Topological Sort / Graph Traversals

Ruth Anderson
Autumn 2013
Announcements

• **Homework 4** – due NOW
• **Project 2** – Phase B due Wed Nov 6th at 11pm
Today

• Graphs
 – Representations
 – Topological Sort
 – Graph Traversals
Topological Sort

Problem: Given a DAG $G = (V, E)$, output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it.

Example input:

Example output:

142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

Disclaimer: Do not use for official advising purposes! (Implies that CSE 332 is a pre-req for CSE 312 – not true)
Valid Topological Sorts:
Questions and comments

• Why do we perform topological sorts only on DAGs?

• Is there always a unique answer?

• What DAGs have exactly 1 answer?

• Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Questions and comments

• Why do we perform topological sorts only on DAGs?
 – Because a cycle means there is no correct answer

• Is there always a unique answer?
 – No, there can be 1 or more answers; depends on the graph

• What DAGs have exactly 1 answer?
 – Lists

• Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Topological Sort Uses

- Figuring out how to finish your degree
- Computing the order in which to recompute cells in a spreadsheet
- Determining the order to compile files using a Makefile
- In general, taking a dependency graph and coming up with an order of execution
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(u \) adjacent to \(v \) (i.e. \(u \) such that \((v,u) \) in \(E \)), decrement the in-degree of \(u \)
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
Example

Output: 126

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

11/01/2013
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x

In-degree: 0 0 2 1 2 1 1 1 2 1 1 1 1 1

11/01/2013
Example

Output: 126 142 143

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?: x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Output: 126
 142
 143
 311

...
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x
In-degree: 0 0 2 1 2 1 1 1 1 1 1 1

Output: 126 142 143 311 331
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Output: 126
 142
 143
 311
 331
 332
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed?: x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
1 0 1 0 0 1 0 0 0 0 0 0
0 0

Output: 126 142 143 311 331 332 312
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed?: x x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 1 0 0 1 0 0 0 0
 0 0

Output: 126
 142
 143
 311
 331
 332
 312
 341
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 1 0 0 1 0 0 0 0 0 0
 0 0 0 0

Output: 126
 142
 143
 311
 331
 332
 312
 341
 351
 352
 440
A couple of things to note

• Needed a vertex with in-degree of 0 to start
 – No cycles
• Ties between vertices with in-degrees of 0 can be broken arbitrarily
 – Potentially many different correct orders
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
 v = findNewVertexOfDegreeZero();
 put v next in output
 for each w adjacent to v
 w.indegree--;
Running time?

```java
labelEachVertexWithItsInDegree();
for (ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```

- What is the worst-case running time?
 - Initialization $O(|V| + |E|)$ (assuming adjacency list)
 - Sum of all find-new-vertex $O(|V|^2)$ (because each $O(|V|)$)
 - Sum of all decrements $O(|E|)$ (assuming adjacency list)
 - So total is $O(|V|^2 + |E|)$ – not good for a sparse graph!
Doing better

The trick is to avoid searching for a zero-degree node every time!
– Keep the “pending” zero-degree nodes in a list, stack, queue, box, table, or something
– Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = \text{dequeue}()$
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement the in-degree of u, if new degree is 0, enqueue it
Running time?

```c
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0)
            enqueue(v);
    }
}
```
Running time?

```java
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0)
            enqueue(v);
    }
}
```

- What is the worst-case running time?
 - Initialization: $O(|V|+|E|)$ (assuming adjacency list)
 - Sum of all enqueues and dequeues: $O(|V|)$
 - Sum of all decrements: $O(|E|)$ (assuming adjacency list)
 - So total is $O(|E| + |V|)$ – much better for sparse graph!
Graph Traversals

Next problem: For an arbitrary graph and a starting node \(v \), find all nodes \textit{reachable} (i.e., there exists a path) from \(v \)

- Possibly “do something” for each node (an iterator!)
 - E.g. Print to output, set some field, etc.

Related:

- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
 - For strongly, need a cycle back to starting node

Basic idea:

- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once
Abstract Idea

traverseGraph(Node start) {
 Set pending = emptySet();
 pending.add(start)
 mark start as visited
 while(pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if(u is not marked) {
 mark u
 pending.add(u)
 }
 }
}
Running time and options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$
 - Use an adjacency list representation

- The order we traverse depends entirely on how add and remove work/are implemented
 - Depth-first graph search (DFS): a stack
 - Breadth-first graph search (BFS): a queue

- DFS and BFS are “big ideas” in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first
Recursive DFS, Example: trees

• A tree is a graph and DFS and BFS are particularly easy to "see"

\[
\text{DFS(Node start) \{ mark and "process" (e.g. print) start } \\
\text{for each node u adjacent to start } \\
\text{if u is not marked } \\
\text{DFS(u) } \\
\}
\]

Order processed: A, B, D, E, C, F, G, H

• Exactly what we called a "pre-order traversal" for trees

• The marking is not needed here, but we need it to support arbitrary graphs, we need a way to process each node exactly once
DFS with a stack, Example: trees

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

Order processed:
- A different but perfectly fine traversal
DFS with a stack, Example: trees

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

Order processed: A, C, F, H, G, B, E, D
- A different but perfectly fine traversal
BFS with a queue, Example: trees

```
BFS(Node start) {
    initialize queue q to hold start
    mark start as visited
    while(q is not empty) {
        next = q.dequeue() // and "process"
        for each node u adjacent to next
            if(u is not marked)
                mark u and enqueue onto q
    }
}
```

Order processed:
- A “level-order” traversal
BFS with a queue, Example: trees

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

Order processed: A, B, C, D, E, F, G, H

• A “level-order” traversal
DFS/BFS Comparison

Breadth-first search:
- Always finds shortest paths, i.e., “optimal solutions
 - Better for “what is the shortest path from x to y”
- Queue may hold $O(|V|)$ nodes (e.g. at the bottom level of binary tree of height h, 2^h nodes in queue)

Depth-first search:
- Can use less space in finding a path
 - If longest path in the graph is p and highest out-degree is d then DFS stack never has more than $d*p$ elements

A third approach: Iterative deepening (IDFS):
- Try DFS but don’t allow recursion more than k levels deep.
 - If that fails, increment k and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.
Saving the path

• Our graph traversals can answer the “reachability question”:
 – “Is there a path from node x to node y?”

• Q: But what if we want to output the actual path?
 – Like getting driving directions rather than just knowing it’s possible to get there!

• A: Like this:
 – Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set v \texttt{.path} field to be u)
 – When you reach the goal, follow path fields backwards to where you started (and then reverse the answer)
 – If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Austin

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique
Example using BFS

What is a path from Seattle to Austin
- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique