CSE 332: Data Abstractions
Lecture 13: Beyond Comparison Sorting

Ruth Anderson
Autumn 2013
Announcements

• **Project 2** – Phase A due Fri at 11pm
 – Clarifications posted, check Msg board, email cse332-staff
• (No homework due Friday)
• **Midterm** – **Monday Oct 28th during lecture**, info about midterm posted, review session this weekend
• **Homework 4** – due Friday Nov 1st at the BEGINNING of lecture
Today

- Sorting
 - Comparison sorting
 - Beyond comparison sorting
The Big Picture

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort

Handling huge data sets
- External sorting
How fast can we sort?

• Heapsort & mergesort have $O(n \log n)$ worst-case running time

• Quicksort has $O(n \log n)$ average-case running times

• These bounds are all tight, actually $\Theta(n \log n)$

• So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$

 – Instead: prove that this is impossible

• Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison
A Different View of Sorting

• Assume we have n elements to sort
 – And for simplicity, none are equal (no duplicates)

• How many \textit{permutations} (possible orderings) of the elements?

• Example, $n=3$,

A Different View of Sorting

- Assume we have \(n \) elements to sort
 - And for simplicity, none are equal (no duplicates)

- How many **permutations** (possible orderings) of the elements?

- Example, \(n=3 \), six possibilities

- In general, \(n \) choices for least element, then \(n-1 \) for next, then \(n-2 \) for next, …
 - \(n(n-1)(n-2)...(2)(1) = n! \) possible orderings
Describing every comparison sort

• A different way of thinking of sorting is that the sorting algorithm has to “find” the right answer among the n! possible answers
 – Starts “knowing nothing”, “anything is possible”
 – Gains information with each comparison, eliminating some possibilities
 • Intuition: At best, each comparison can eliminate half of the remaining possibilities
 – In the end narrows down to a single possibility
Counting Comparisons

• Don’t know what the algorithm is, but it cannot make progress without doing comparisons
 – Eventually does a first comparison “is \(a < b \) ?"
 – Can use the result to decide what second comparison to do
 – Etc.: comparison \(k \) can be chosen based on first \(k-1 \) results

• Can represent this process as a decision tree
 – Nodes contain “set of remaining possibilities”
 – At root, anything is possible; no option eliminated
 – Edges are “answers from a comparison”
 – The algorithm does not actually build the tree; it’s what our proof uses to represent “the most the algorithm could know so far” as the algorithm progresses
The leaves contain all the possible orderings of a, b, c
A different algorithm would lead to a different tree
Example if $a < c < b$

Possible orders:
- $a < b < c$, $b < c < a$, $a < c < b$, $c < a < b$, $b < a < c$, $c < b < a$

Actual order:
- $a < b < c$
- $a < c < b$
- $b < c$
What the decision tree tells us

• A binary tree because each comparison has 2 outcomes
 – Perform only comparisons between 2 elements; binary result
 • Ex: Is a<b? Yes or no?
 – We assume no duplicate elements
 – Assume algorithm doesn’t ask redundant questions

• Because any data is possible, any algorithm needs to ask enough questions to produce all $n!$ answers
 – Each answer is a different leaf
 – So the tree must be big enough to have $n!$ leaves
 – Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with $n!$ leaves
 – So no algorithm can have worst-case running time better than the height of a tree with $n!$ leaves

• Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm’s decision tree
Where are we

Proven: No comparison sort can have worst-case running time better than: the height of a binary tree with \(n! \) leaves
- Turns out average-case is same asymptotically
- A comparison sort could be worse than this height, but it cannot be better
- Fine, how tall is a binary tree with \(n! \) leaves?

Now: Show that a binary tree with \(n! \) leaves has height \(\Omega(n \log n) \)
- That is, \(n \log n \) is the lower bound, the height must be at least this, could be more, (in other words your comparison sorting algorithm could take longer than this, but it won’t be faster)
- Factorial function grows very quickly

Then we’ll conclude that: (Comparison) Sorting is \(\Omega(n \log n) \)
- This is an amazing computer-science result: proves all the clever programming in the world can’t sort in linear time!
Lower bound on Height

• A binary tree of height h has at most how many leaves?
 \[L \leq \quad \quad \quad \quad \quad \quad \quad \quad \]

• A binary tree with L leaves has height at least:
 \[h \geq \quad \quad \quad \quad \quad \quad \quad \quad \]

• The decision tree has how many leaves:

• So the decision tree has height:
 \[h \geq \quad \quad \quad \quad \quad \quad \quad \quad \]
Lower bound on Height

• A binary tree of height h has at most how many leaves?
 $L \leq 2^h$

• A binary tree with L leaves has height at least:
 $h \geq \log_2 L$

• The decision tree has how many leaves: $N!$

• So the decision tree has height:
 $h \geq \log_2 N!$
The height of a binary tree with L leaves is at least $\log_2 L$.

So the height of our decision tree, h:

$$h \geq \log_2 (n!)$$

$$= \log_2 (n^*(n-1)^*(n-2)...(2)(1))$$

$$= \log_2 n + \log_2 (n-1) + ... + \log_2 1$$

$$\geq \log_2 n + \log_2 (n-1) + ... + \log_2 (n/2)$$

$$\geq (n/2) \log_2 (n/2)$$

each of the $n/2$ terms left is $\geq \log_2 (n/2)$

$$= (n/2)(\log_2 n - \log_2 2)$$

$$= (1/2)n \log_2 n - (1/2)n$$

"=“ $\Omega (n \log n)$
Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort
- ...

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)
- ...

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort

Handling huge data sets
- External sorting

How???
- Change the model – assume more than ‘compare(a,b)’
BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K, and put each element in its proper bucket (a.k.a. bin)
 - *If* data is only integers, no need to store more than a *count* of how many times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

- Example:

 K=5

 Input: (5,1,3,4,3,2,1,1,5,4,5)

 Output:
BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K, and put each element in its proper bucket (*a.k.a.* bin)
 - *If* data is only integers, no need to store more than a *count* of how many times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

- Example:
 - $K=5$
 - input (5,1,3,4,3,2,1,1,5,4,5)
 - output: 1,1,1,2,3,3,4,4,5,5,5

What is the running time?
Analyzing bucket sort

• Overall: $O(n+K)$
 – Linear in n, but also linear in K
 – $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort

• Good when range, K, is smaller (or not much larger) than n
 – (We don’t spend time doing lots of comparisons of duplicates!)

• Bad when K is much larger than n
 – Wasted space; wasted time during final linear $O(K)$ pass

• For data in addition to integer keys, use list at each bucket
Bucket Sort with Data

- Most real lists aren’t just #’s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end O(1) (keep pointer to last element)

<table>
<thead>
<tr>
<th>count array</th>
<th>Rocky V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Harry Potter</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Casablanca Star Wars</td>
</tr>
</tbody>
</table>

- Example: Movie ratings: 1=bad,… 5=excellent
- Input=
 5: Casablanca
 3: Harry Potter movies
 1: Rocky V
 5: Star Wars

Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars

This result is **stable**; Casablanca still before Star Wars

Bucket sort illustrates a more general trick: Imagine a heap for a small range of integer priorities
Radix sort

• Radix = “the base of a number system”
 – Examples will use 10 because we are used to that
 – In implementations use larger numbers
 • For example, for ASCII strings, might use 128
• Idea:
 – Bucket sort on one digit at a time
 • Number of buckets = radix
 • Starting with least significant digit, sort with Bucket Sort
 • Keeping sort stable
 – Do one pass per digit
• Invariant: After \(k \) passes, the last \(k \) digits are sorted

• Aside: Origins go back to the 1890 U.S. census
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>721</td>
<td>3</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td>537</td>
<td>478</td>
<td>38</td>
<td>9</td>
</tr>
</tbody>
</table>

Input: 478
537
9
721
3
38
143
67

Order now:

721
3
143
537
67
478
38
9

First pass:
1. bucket sort by ones digit
2. Iterate thru and collect into a list
 • List is sorted by first digit

10/23/2013
Example

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
<td>143</td>
<td>537</td>
<td>67</td>
<td>478</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radix = 10

Order was: 721 3 143 537 67 478

Second pass:
- **stable** bucket sort by tens digit
- If we chop off the 100’s place, these #s are sorted

Order now: 3 9 721 537 67 478
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>721</td>
<td>537</td>
<td>143</td>
<td>67</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order was: 3 9 721 537 38 67 143 478 537 721

Third pass:

stable bucket sort by 100s digit

Only 3 digits: We’re done!

Order now: 3 9 38 67 143 478 537 721
RadixSort

- Input: 126, 328, 636, 341, 416, 131, 328

BucketSort on lsd:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

BucketSort on next-higher digit:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

BucketSort on msd:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
Analysis of Radix Sort

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
 - e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = “Digits”: P
 - e.g. Ages of people: 3; Phone #: 10; Person’s name: ?

- Work per pass is 1 bucket sort: ____________
 - Each pass is a Bucket Sort
- Total work is ______________
 - We do ‘P’ passes, each of which is a Bucket Sort
Analysis of Radix Sort

Performance depends on:

- Input size: \(n \)
- Number of buckets = Radix: \(B \)
 - e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = “Digits”: \(P \)
 - e.g. Ages of people: 3; Phone #: 10; Person’s name: ?

- Work per pass is 1 bucket sort: \(O(B+n) \)
 - Each pass is a Bucket Sort
- Total work is \(O(P(B+n)) \)
 - We do ‘P’ passes, each of which is a Bucket Sort
Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Approximate run-time: $15*(52 + n)$
 - This is less than $n \log n$ only if $n > 33,000$
 - Of course, cross-over point depends on constant factors of the implementations plus P and B
 - And radix sort can have poor locality properties
- Not really practical for many classes of keys
 - Strings: Lots of buckets
Recap: Features of Sorting Algorithms

In-place
- Sorted items occupy the same space as the original items. (No copying required, only O(1) extra space if any.)

Stable
- Items in input with the same value end up in the same order as when they began.

Examples:
- Merge Sort - not in place, stable
- Quick Sort - in place, not stable
Sorting massive data: External Sorting

Need sorting algorithms that minimize disk/tape access time:
- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access

Basic Idea:
- Load chunk of data into Memory, sort, store this “run” on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)

- Mergesort can leverage multiple disks
- Weiss gives some examples
Sorting Summary

• Simple $O(n^2)$ sorts can be fastest for small n
 – selection sort, insertion sort (latter linear for mostly-sorted)
 – good for “below a cut-off” to help divide-and-conquer sorts
• $O(n \log n)$ sorts
 – heap sort, in-place but not stable nor parallelizable
 – merge sort, not in place but stable and works as external sort
 – quick sort, in place but not stable and $O(n^2)$ in worst-case
 • often fastest, but depends on costs of comparisons/copies
• $\Omega (n \log n)$ is worst-case and average lower-bound for sorting by comparisons
• Non-comparison sorts
 – Bucket sort good for small number of key values
 – Radix sort uses fewer buckets and more phases
• Best way to sort? It depends!