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Announcements 

• Project 2 – Phase A due Wed Friday Oct 25 at 11pm 

• (No homework due Friday) 

• Midterm – Monday  Oct 28 during lecture, info about midterm 

posted soon 

• Homework 4 – due Friday Nov 1st at the BEGINNING of lecture 
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Today 

• Dictionaries 

– Hashing 

• Sorting 

– Comparison sorting 
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Introduction to sorting 

• Stacks, queues, priority queues, and dictionaries all focused on 

providing one element at a time 

• But often we know we want “all the data items” in some order 

– Anyone can sort, but a computer can sort faster 

– Very common to need data sorted somehow 

• Alphabetical list of people 

• Population list of countries 

• Search engine results by relevance 

• … 

• Different algorithms have different asymptotic and constant-

factor trade-offs 

– No single ‘best’ sort for all scenarios 

– Knowing one way to sort just isn’t enough 
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More reasons to sort 

General technique in computing:  

 Preprocess (e.g. sort) data to make subsequent operations faster 

 

Example: Sort the data so that you can 

– Find the kth largest in constant time for any k 

– Perform binary search to find an element in logarithmic time 

 

Whether the benefit of the preprocessing depends on 

– How often the data will change 

– How much data there is 
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The main problem, stated carefully 
For now we will assume we have n comparable elements in an array 

and we want to rearrange them to be in increasing order 

Input: 

– An array A of data records 

– A key value in each data record 

– A comparison function (consistent and total) 

• Given keys a & b, what is their relative ordering?  <, =, >? 

• Ex: keys that implement Comparable or have a Comparator that can 

handle them 

Effect: 
– Reorganize the elements of A such that for any i and j,  

 if i < j then A[i]  A[j] 

– Usually unspoken assumption: A must have all the same data it started with 

– Could also sort in reverse order, of course 

An algorithm doing this is a comparison sort 
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Variations on the basic problem 

1. Maybe elements are in a linked list (could convert to array and  back in 

linear time, but some algorithms needn’t do so) 

2. Maybe in the case of ties we should preserve the original ordering 

– Sorts that do this naturally are called stable sorts 

– One way to sort twice, Ex: Sort movies by year, then for ties, 

alphabetically 

3. Maybe we must not use more than O(1) “auxiliary space” 

– Sorts meeting this requirement are called ‘in-place’ sorts 

– Not allowed to allocate extra array (at least not with size O(n)), but can 

allocate O(1) # of variables 

– All work done by swapping around in the array 

4. Maybe we can do more with elements than just compare 

– Comparison sorts assume we work using a binary ‘compare’ operator 

– In special cases we can sometimes get faster algorithms 

5. Maybe we have too much data to fit in memory 

– Use an “external sorting” algorithm 
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Sorting: The Big Picture 
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Simple 

algorithms: 

O(n2) 

Fancier 

algorithms: 

O(n log n) 

Comparison 

lower bound: 

(n log n) 

Specialized 

algorithms: 

O(n) 

Handling 

huge data 

sets 

Insertion sort 

Selection sort 

Shell sort 

… 

Heap sort 

Merge sort 

Quick sort (avg) 

… 

Bucket sort 

Radix sort 

External 

sorting 

 



Insertion Sort 

• Idea: At step k, put the kth element in the correct position among 

the first k elements 
 

 

• Alternate way of saying this: 

– Sort first two elements 

– Now insert 3rd element in order 

– Now insert 4th element in order 

– … 
 

• “Loop invariant”: when loop index is i, first i elements are sorted 

 

• Time?  

    Best-case  _____     Worst-case  _____     “Average” case ____ 
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Insertion Sort 

• Idea: At step k, put the kth element in the correct position among 

the first k elements 
 

 

• Alternate way of saying this: 

– Sort first two elements 

– Now insert 3rd element in order 

– Now insert 4th element in order 

– … 
 

• “Loop invariant”: when loop index is i, first i elements are sorted 

 

• Time?  

    Best-case   O(n)     Worst-case   O(n2)     “Average” case   O(n2) 

           start sorted           start reverse sorted       (see text)   
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Selection sort 

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k 
 

• Alternate way of saying this: 

– Find smallest element, put it 1st 

– Find next smallest element, put it 2nd 

– Find next smallest element, put it 3rd 

– … 
 

•  “Loop invariant”: when loop index is i, first i elements are the i 

smallest elements in sorted order 

 

• Time?  

    Best-case  _____     Worst-case  _____     “Average” case ____ 
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Selection sort 

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k 
 

• Alternate way of saying this: 

– Find smallest element, put it 1st 

– Find next smallest element, put it 2nd 

– Find next smallest element, put it 3rd 

– … 
 

•  “Loop invariant”: when loop index is i, first i elements are the i 

smallest elements in sorted order 

 

• Time?    

    Best-case  O(n2)    Worst-case O(n2)     “Average” case O(n2) 

         Always T(1) = 1 and T(n) = n + T(n-1) 
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Insertion Sort vs. Selection Sort 

• Different algorithms 

 

• Solve the same problem 

 

• Have the same worst-case and average-case asymptotic 

complexity 

– Insertion-sort has better best-case complexity; preferable 

when input is “mostly sorted” 

 

• Other algorithms are more efficient for non-small arrays that are 

not already almost sorted 

– Insertion sort may do well on small arrays 
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Aside: We won’t cover Bubble Sort 

• It doesn’t have good asymptotic complexity: O(n2) 

 

• It’s not particularly efficient with respect to common factors 

 

• Basically, almost everything it is good at, some other algorithm 

is at least as good at 

 

• Some people seem to teach it just because someone taught it to 

them 

 

 
• For fun see: “Bubble Sort: An Archaeological Algorithmic Analysis”, Owen Astrachan, SIGCSE 2003 

http://www.cs.duke.edu/~ola/bubble/bubble.pdf 
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Sorting: The Big Picture 
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Simple 

algorithms: 

O(n2) 

Fancier 

algorithms: 

O(n log n) 

Comparison 

lower bound: 

(n log n) 

Specialized 

algorithms: 

O(n) 

Handling 

huge data 

sets 

Insertion sort 

Selection sort 

Shell sort 

… 

Heap sort 

Merge sort 

Quick sort (avg) 

… 

Bucket sort 

Radix sort 

External 

sorting 

 



Heap sort 

• As you saw on project 2, sorting with a heap is easy: 

– insert each arr[i], better yet use buildHeap 

– for(i=0; i < arr.length; i++)       

     arr[i] = deleteMin(); 

 

• Worst-case running time: 

 

• We have the array-to-sort and the heap 

– So this is not an in-place sort 

– There’s a trick to make it in-place… 
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Heap sort 

• As you saw on project 2, sorting with a heap is easy: 

– insert each arr[i], better yet use buildHeap 

– for(i=0; i < arr.length; i++)       

     arr[i] = deleteMin(); 

 

• Worst-case running time: O(n log n)  why? 

 

• We have the array-to-sort and the heap 

– So this is not an in-place sort 

– There’s a trick to make it in-place… 
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In-place heap sort 

– Treat the initial array as a heap (via buildHeap) 

– When you delete the ith  element, put it at arr[n-i] 

• It’s not part of the heap anymore! 
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4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i]= 

deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

But this reverse sorts –  

how would you fix that? 



“AVL sort” 

• How? 
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“AVL sort” 

• We can also use a balanced tree to: 

– insert each element: total time O(n log n) 

– Repeatedly deleteMin: total time O(n log n) 

 

• But this cannot be made in-place and has worse constant 

factors than heap sort 

– both are O(n log n) in worst, best, and average case 

– neither parallelizes well 

– heap sort is better 

 

• Don’t even think about trying to sort with a hash table… 
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Divide and conquer 

Very important technique in algorithm design 

 

1. Divide problem into smaller parts 

 

2. Solve the parts independently 

– Think recursion 

– Or potential parallelism 

 

3. Combine solution of parts to produce overall solution 

 

Ex: Sort each half of the array, combine together; to sort each half, 

split into halves… 

10/21/2013 21 



Divide-and-conquer sorting 

Two great sorting methods are fundamentally divide-and-conquer 

 

1. Mergesort:     Sort the left half of the elements (recursively) 

         Sort the right half of the elements (recursively) 

      Merge the two sorted halves into a sorted whole 

 

2. Quicksort:    Pick a “pivot” element  

     Divide elements into those less-than pivot  

       and those greater-than pivot 

     Sort the two divisions (recursively on each) 

     Answer is [sorted-less-than then pivot then     

                      sorted-greater-than] 
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Mergesort 

• To sort array from position lo to position hi: 

– If range is 1 element long, it’s sorted! (Base case) 

– Else, split into two halves:  

• Sort from lo to (hi+lo)/2 

• Sort from (hi+lo)/2 to hi 

• Merge the two halves together 
 

• Merging takes two sorted parts and sorts everything 

– O(n) but requires auxiliary space… 
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8 2 9 4 5 3 1 6 a 

 hi 

 0         1        2          3        4         5         6         7 

lo 



Example, focus on merging 

Start with:  

10/21/2013 24 

8 2 9 4 5 3 1 6 

After we return from  

left and right recursive calls 

(pretend it works for now)   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

    (After merge, 

copy back to 

original array) 

aux 

a 

a 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 8 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 8 9 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 8 9 

    (After merge, 

copy back to 

original array) 

1 2 3 4 5 6 8 9 



Mergesort example: Recursively splitting 

list in half 

8  2   9   4 5   3   1   6 

8   2 1   6 9   4 5   3 

8        2 

Divide 

Divide 

Divide 

1 element 

8 2 9 4 5 3 1 6 

9       4 5      3 1     6 
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Mergesort example: Merge as we return 

from recursive calls 

8  2   9   4 5   3   1   6 

8   2 1   6 9   4 5   3 

8        2 

   2   8 

        2   4   8   9 

        1   2   3   4   5   6   8   9 

Merge 

Merge 

Merge 

Divide 

Divide 

Divide 

1 element 

8 2 9 4 5 3 1 6 

9       4 5      3 1     6 

4    9  3   5  1   6 

      1   3   5   6 

When a recursive call ends, it’s sub-arrays are each in order; just   

 need to merge them in order together 10/21/2013 35 



Mergesort example: Merge as we return 

from recursive calls 

8  2   9   4 5   3   1   6 

8   2 1   6 9   4 5   3 

8        2 

   2   8 

        2   4   8   9 

        1   2   3   4   5   6   8   9 

Merge 

Merge 

Merge 

Divide 

Divide 

Divide 

1 element 

8 2 9 4 5 3 1 6 

9       4 5      3 1     6 

4    9  3   5  1   6 

      1   3   5   6 

We need another array in which to do each merging step; merge   

 results into there, then copy back to original array 10/21/2013 36 



Mergesort, some details: saving a little time 

• What if the final steps of our merging looked like the following: 

 

 

 

 

 

 

 

• Seems kind of wasteful to copy 8 & 9 to the auxiliary array just 

to copy them immediately back… 

2 4 5 6 1 3 8 9 

1 2 3 4 5 6 

Main array 

 

 

 

 

Auxiliary array 
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Mergesort, some details: saving a little time 

• Unnecessary to copy ‘dregs’ over to auxiliary array 

– If left-side finishes first, just stop the merge & copy the 
auxiliary array: 

 

 

 

 

 

– If right-side finishes first, copy dregs directly into right side, 
then copy auxiliary array 

copy 

first 

second 
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Some details: saving space / copying 

Simplest / worst approach:  

 Use a new auxiliary array of size (hi-lo) for every merge 

 Returning from a recursive call?  Allocate a new array! 

 

Better: 

 Reuse same auxiliary array of size n for every merging stage 

 Allocate auxiliary array at beginning, use throughout 

 

Best (but a little tricky): 

 Don’t copy back – at 2nd, 4th, 6th, … merging stages, use the 

original array as the auxiliary array and vice-versa 

– Need one copy at end if number of stages is odd 
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Picture of the “best” from previous slide:  

Allocate one auxiliary array, switch each step 

First recurse down to lists of size 1 

As we return from the recursion, switch off arrays 

 

 

 

 

 

 

 

 

 

 

 

Arguably easier to code up without recursion at all 

Merge by 1 

 

Merge by 2 

 

Merge by 4 

 

Merge by 8 

 

Merge by 16 

 

Copy if Needed 
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Linked lists and big data 

We defined the sorting problem as over an array, but sometimes 

you want to sort linked lists 
 

One approach: 

– Convert to array: O(n) 

– Sort: O(n log n) 

– Convert back to list: O(n) 
 

Or: mergesort works very nicely on linked lists directly 

– heapsort and quicksort do not 

– insertion sort and selection sort do but they’re slower 
 

Mergesort is also the sort of choice for external sorting 

– Linear merges minimize disk accesses 
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Mergesort Analysis 

Having defined an algorithm and argued it is correct, we should 

analyze its running time (and space): 

 

To sort n elements, we: 

– Return immediately if n=1 

– Else do 2 subproblems of size n/2 and then an O(n) merge 

 

Recurrence relation? 
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Mergesort Analysis 

Having defined an algorithm and argued it is correct, we should 

analyze its running time (and space): 

 

To sort n elements, we: 

– Return immediately if n=1 

– Else do 2 subproblems of size n/2 and then an O(n) merge 

 

Recurrence relation: 

  T(1) = c1 

      T(n) = 2T(n/2) + c2n 
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MergeSort Recurrence 

(For simplicity let constants be 1 – no effect on asymptotic answer) 

 

T(1) = 1                                            So total is 2kT(n/2k) + kn where 

T(n) = 2T(n/2) + n                                   n/2k = 1, i.e., log n = k    

        = 2(2T(n/4) + n/2) + n               That is, 2log n T(1) + n log n 

        = 4T(n/4) + 2n                                     = n + n log n 

        = 4(2T(n/8) + n/4) + 2n                        = O(n log n) 

        = 8T(n/8) + 3n 

        …. (after k expansions) 

        = 2kT(n/2k) + kn     
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Or more intuitively… 

This recurrence comes up often enough you should just “know” it’s 
O(n log n) 

 

Merge sort is relatively easy to intuit (best, worst, and average): 

• The recursion “tree” will have log n height 

• At each level we do a total amount of merging equal to n 
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Quicksort 

• Also uses divide-and-conquer 

– Recursively chop into halves 

– But, instead of doing all the work as we merge together, we’ll 

do all the work as we recursively split into halves 

– Also unlike MergeSort, does not need auxiliary space 
 

• O(n log n) on average , but O(n2) worst-case  

– MergeSort is always O(nlogn) 

– So why use QuickSort? 
 

• Can be faster than mergesort 

– Often believed to be faster 

– Quicksort does fewer copies and more comparisons, so it 

depends on the relative cost of these two operations! 
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Quicksort overview 

1. Pick a pivot element 

– Hopefully an element ~median 

– Good QuickSort performance depends on good choice of pivot; we’ll see 

why later, and talk about good pivot selection later 

2. Partition all the data into: 

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 

3. Recursively sort A and C 

4. The answer is, “as simple as A, B, C”  

 

(Alas, there are some details lurking in this algorithm) 
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Quicksort: Think in terms of sets 
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13 
81 

92 

43 

65 

31 57 

26 

75 
0 

S select pivot value 

13 
81 

92 

43 65 
31 

57 26 

75 
0 S1 S2 partition S 

13 43 31 57 26 0 

S1 
81 92 75 65 

S2 
QuickSort(S1) and 

QuickSort(S2) 

13 43 31 57 26 0 65 81 92 75 S Presto!  S is sorted 

[Weiss] 



Quicksort Example, showing recursion 
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2  4   3   1 8   9   6 

2   1 9 4 6 

        2                

   1   2                   

        1   2   3   4 

        1   2   3   4   5   6   8   9 

Conquer 

Conquer 

Conquer 

Divide 

Divide 

Divide 

1 element 

8 2 9 4 5 3 1 6 

5 

8 
3 

1 

6   8   9 



2  4   3   1 8   9   6 

2   1 9 4 6 

        2                

   1   2                   

        1   2   3   4 

        1   2   3   4   5   6   8   9 

Conquer 

Conquer 

Conquer 

Divide 

Divide 

Divide 

1 element 

8 2 9 4 5 3 1 6 

5 

8 
3 

1 

6   8   9 

MergeSort 

Recursion Tree 

QuickSort 

Recursion Tree 
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Quicksort Details 

We have not yet explained: 

 

• How to pick the pivot element 

– Any choice is correct: data will end up sorted 

– But as analysis will show, want the two partitions to be about 

equal in size 

 

• How to implement partitioning 

– In linear time 

– In place 
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Pivots 

• Best pivot? 

– Median 

– Halve each time 

 

 

 

• Worst pivot? 

– Greatest/least element 

– Reduce to problem of size 1 smaller 

– O(n2) 

2  4   3   1 8   9   6 

2   1 9 4 6 

        2                

   1   2                   

        1   2   3   4 

        1   2   3   4   5   6   8   9 

Conquer 

Conquer 

Conquer 

Divide 

Divide 

Divide 

1 element 

8 2 9 4 5 3 1 6 

5 

8 
3 

1 

6   8   9 
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Quicksort: Potential pivot rules 

While sorting arr from lo (inclusive) to hi (exclusive)… 

 

• Pick arr[lo] or arr[hi-1] 

– Fast, but worst-case is (mostly) sorted input 

 

• Pick random element in the range 

– Does as well as any technique, but (pseudo)random number 

generation can be slow 

– (Still probably the most elegant approach) 

 

• Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2] 

– Common heuristic that tends to work well 
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Partitioning 

• That is, given 8, 4, 2, 9, 3, 5, 7 and pivot 5 

– Dividing into left half & right half (based on pivot) 

 

• Conceptually simple, but hardest part to code up correctly 

– After picking pivot, need to partition 

• Ideally in linear time 

• Ideally in place 

 

• Ideas? 
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Partitioning 

• One approach (there are slightly fancier ones): 

1. Swap pivot with arr[lo]; move it ‘out of the way’ 

2. Use two fingers i and j, starting at lo+1 and hi-1 (start & 

end of range, apart from pivot) 

3. Move from right until we hit something less than the pivot; 

belongs on left side 

Move from left until we hit something greater than the pivot; 

belongs on right side  
Swap these two; keep moving inward 

while (i < j) 

   if (arr[j] > pivot) j-- 

   else if (arr[i] < pivot) i++ 

   else swap arr[i] with arr[j] 

4. Put pivot back in middle (Swap with arr[i]) 
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Quicksort Example 

• Step one: pick pivot as median of 3 

– lo = 0, hi = 10 
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6 1 4 9 0 3 5 2 7 8 
0 1 2 3 4 5 6 7 8 9 

• Step two: move pivot to the lo position 

 

8 1 4 9 0 3 5 2 7 6 
0 1 2 3 4 5 6 7 8 9 



Quicksort Example 

Now partition in place 

 

 

Move fingers 

 

 

Swap 

 

Move fingers 

 

 

Move pivot 
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6 1 4 9 0 3 5 2 7 8 

6 1 4 9 0 3 5 2 7 8 

6 1 4 2 0 3 5 9 7 8 

6 1 4 2 0 3 5 9 7 8 

Often have more than  

one swap during partition –  

this is a short example 

5 1 4 2 0 3 6 9 7 8 



Quicksort Analysis 

• Best-case? 

 

 

 

 

• Worst-case? 

 

 

 

 

• Average-case? 
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Quicksort Analysis 

• Best-case: Pivot is always the median 

  T(0)=T(1)=1 

  T(n)=2T(n/2) + n           -- linear-time partition 

  Same recurrence as mergesort: O(n log n) 

 

• Worst-case: Pivot is always smallest or largest element 

  T(0)=T(1)=1 

              T(n) = 1T(n-1)  + n    

  Basically same recurrence as selection sort: O(n2) 

 

• Average-case (e.g., with random pivot) 

– O(n log n), not responsible for proof (in text) 
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Quicksort Cutoffs 

• For small n, all that recursion tends to cost more than doing a 

quadratic sort 

– Remember asymptotic complexity is for large n 

– Also, recursive calls add a lot of overhead for small n 

• Common engineering technique: switch to a different algorithm 

for subproblems below a cutoff 

– Reasonable rule of thumb: use insertion sort for n < 10 

• Notes: 

– Could also use a cutoff for merge sort 

– Cutoffs are also the norm with parallel algorithms  

• switch to sequential algorithm 

– None of this affects asymptotic complexity 
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Quicksort Cutoff skeleton 
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void quicksort(int[] arr, int lo, int hi) { 

  if(hi – lo < CUTOFF) 

     insertionSort(arr,lo,hi); 

  else 

     … 

} 

Notice how this cuts out the vast majority of the recursive calls  

–   Think of the recursive calls to quicksort as a tree 

–   Trims out the bottom layers of the tree 


