
CSE 332: Data Abstractions

Lecture 12: Comparison Sorting

Ruth Anderson

Autumn 2013

Announcements

• Project 2 – Phase A due Wed Friday Oct 25 at 11pm

• (No homework due Friday)

• Midterm – Monday Oct 28 during lecture, info about midterm

posted soon

• Homework 4 – due Friday Nov 1st at the BEGINNING of lecture

10/21/2013 2

Today

• Dictionaries

– Hashing

• Sorting

– Comparison sorting

10/21/2013 3

Introduction to sorting

• Stacks, queues, priority queues, and dictionaries all focused on

providing one element at a time

• But often we know we want “all the data items” in some order

– Anyone can sort, but a computer can sort faster

– Very common to need data sorted somehow

• Alphabetical list of people

• Population list of countries

• Search engine results by relevance

• …

• Different algorithms have different asymptotic and constant-

factor trade-offs

– No single ‘best’ sort for all scenarios

– Knowing one way to sort just isn’t enough

10/21/2013 4

More reasons to sort

General technique in computing:

 Preprocess (e.g. sort) data to make subsequent operations faster

Example: Sort the data so that you can

– Find the kth largest in constant time for any k

– Perform binary search to find an element in logarithmic time

Whether the benefit of the preprocessing depends on

– How often the data will change

– How much data there is

10/21/2013 5

The main problem, stated carefully
For now we will assume we have n comparable elements in an array

and we want to rearrange them to be in increasing order

Input:

– An array A of data records

– A key value in each data record

– A comparison function (consistent and total)

• Given keys a & b, what is their relative ordering? <, =, >?

• Ex: keys that implement Comparable or have a Comparator that can

handle them

Effect:
– Reorganize the elements of A such that for any i and j,

 if i < j then A[i]  A[j]

– Usually unspoken assumption: A must have all the same data it started with

– Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

10/21/2013 6

Variations on the basic problem

1. Maybe elements are in a linked list (could convert to array and back in

linear time, but some algorithms needn’t do so)

2. Maybe in the case of ties we should preserve the original ordering

– Sorts that do this naturally are called stable sorts

– One way to sort twice, Ex: Sort movies by year, then for ties,

alphabetically

3. Maybe we must not use more than O(1) “auxiliary space”

– Sorts meeting this requirement are called ‘in-place’ sorts

– Not allowed to allocate extra array (at least not with size O(n)), but can

allocate O(1) # of variables

– All work done by swapping around in the array

4. Maybe we can do more with elements than just compare

– Comparison sorts assume we work using a binary ‘compare’ operator

– In special cases we can sometimes get faster algorithms

5. Maybe we have too much data to fit in memory

– Use an “external sorting” algorithm

10/21/2013 7

Sorting: The Big Picture

10/21/2013 8

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

Insertion Sort

• Idea: At step k, put the kth element in the correct position among

the first k elements

• Alternate way of saying this:

– Sort first two elements

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Time?

 Best-case _____ Worst-case _____ “Average” case ____

9 10/21/2013

Insertion Sort

• Idea: At step k, put the kth element in the correct position among

the first k elements

• Alternate way of saying this:

– Sort first two elements

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Time?

 Best-case O(n) Worst-case O(n2) “Average” case O(n2)

 start sorted start reverse sorted (see text)

10 10/21/2013

Selection sort

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd

– …

• “Loop invariant”: when loop index is i, first i elements are the i

smallest elements in sorted order

• Time?

 Best-case _____ Worst-case _____ “Average” case ____

 11 10/21/2013

Selection sort

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd

– …

• “Loop invariant”: when loop index is i, first i elements are the i

smallest elements in sorted order

• Time?

 Best-case O(n2) Worst-case O(n2) “Average” case O(n2)

 Always T(1) = 1 and T(n) = n + T(n-1)

12 10/21/2013

Insertion Sort vs. Selection Sort

• Different algorithms

• Solve the same problem

• Have the same worst-case and average-case asymptotic

complexity

– Insertion-sort has better best-case complexity; preferable

when input is “mostly sorted”

• Other algorithms are more efficient for non-small arrays that are

not already almost sorted

– Insertion sort may do well on small arrays

13 10/21/2013

Aside: We won’t cover Bubble Sort

• It doesn’t have good asymptotic complexity: O(n2)

• It’s not particularly efficient with respect to common factors

• Basically, almost everything it is good at, some other algorithm

is at least as good at

• Some people seem to teach it just because someone taught it to

them

• For fun see: “Bubble Sort: An Archaeological Algorithmic Analysis”, Owen Astrachan, SIGCSE 2003

http://www.cs.duke.edu/~ola/bubble/bubble.pdf

10/21/2013 14

Sorting: The Big Picture

10/21/2013 15

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

Heap sort

• As you saw on project 2, sorting with a heap is easy:

– insert each arr[i], better yet use buildHeap

– for(i=0; i < arr.length; i++)

 arr[i] = deleteMin();

• Worst-case running time:

• We have the array-to-sort and the heap

– So this is not an in-place sort

– There’s a trick to make it in-place…

10/21/2013 16

Heap sort

• As you saw on project 2, sorting with a heap is easy:

– insert each arr[i], better yet use buildHeap

– for(i=0; i < arr.length; i++)

 arr[i] = deleteMin();

• Worst-case running time: O(n log n) why?

• We have the array-to-sort and the heap

– So this is not an in-place sort

– There’s a trick to make it in-place…

10/21/2013 17

In-place heap sort

– Treat the initial array as a heap (via buildHeap)

– When you delete the ith element, put it at arr[n-i]

• It’s not part of the heap anymore!

10/21/2013 18

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

But this reverse sorts –

how would you fix that?

“AVL sort”

• How?

10/21/2013 19

“AVL sort”

• We can also use a balanced tree to:

– insert each element: total time O(n log n)

– Repeatedly deleteMin: total time O(n log n)

• But this cannot be made in-place and has worse constant

factors than heap sort

– both are O(n log n) in worst, best, and average case

– neither parallelizes well

– heap sort is better

• Don’t even think about trying to sort with a hash table…

10/21/2013 20

Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Solve the parts independently

– Think recursion

– Or potential parallelism

3. Combine solution of parts to produce overall solution

Ex: Sort each half of the array, combine together; to sort each half,

split into halves…

10/21/2013 21

Divide-and-conquer sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)

 Sort the right half of the elements (recursively)

 Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element

 Divide elements into those less-than pivot

 and those greater-than pivot

 Sort the two divisions (recursively on each)

 Answer is [sorted-less-than then pivot then

 sorted-greater-than]

 10/21/2013 22

Mergesort

• To sort array from position lo to position hi:

– If range is 1 element long, it’s sorted! (Base case)

– Else, split into two halves:

• Sort from lo to (hi+lo)/2

• Sort from (hi+lo)/2 to hi

• Merge the two halves together

• Merging takes two sorted parts and sorts everything

– O(n) but requires auxiliary space…

10/21/2013 23

8 2 9 4 5 3 1 6 a

 hi

 0 1 2 3 4 5 6 7

lo

Example, focus on merging

Start with:

10/21/2013 24

8 2 9 4 5 3 1 6

After we return from

left and right recursive calls

(pretend it works for now)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

 (After merge,

copy back to

original array)

aux

a

a

Example, focus on merging

Start with:

10/21/2013 25

8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

10/21/2013 26

8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

10/21/2013 27

8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

10/21/2013 28

8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

10/21/2013 29

8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

10/21/2013 30

8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

10/21/2013 31

8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

10/21/2013 32

8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

10/21/2013 33

8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

 (After merge,

copy back to

original array)

1 2 3 4 5 6 8 9

Mergesort example: Recursively splitting

list in half

8 2 9 4 5 3 1 6

8 2 1 6 9 4 5 3

8 2

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

10/21/2013 34

Mergesort example: Merge as we return

from recursive calls

8 2 9 4 5 3 1 6

8 2 1 6 9 4 5 3

8 2

 2 8

 2 4 8 9

 1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

 1 3 5 6

When a recursive call ends, it’s sub-arrays are each in order; just

 need to merge them in order together 10/21/2013 35

Mergesort example: Merge as we return

from recursive calls

8 2 9 4 5 3 1 6

8 2 1 6 9 4 5 3

8 2

 2 8

 2 4 8 9

 1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

 1 3 5 6

We need another array in which to do each merging step; merge

 results into there, then copy back to original array 10/21/2013 36

Mergesort, some details: saving a little time

• What if the final steps of our merging looked like the following:

• Seems kind of wasteful to copy 8 & 9 to the auxiliary array just

to copy them immediately back…

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main array

Auxiliary array

10/21/2013 37

Mergesort, some details: saving a little time

• Unnecessary to copy ‘dregs’ over to auxiliary array

– If left-side finishes first, just stop the merge & copy the
auxiliary array:

– If right-side finishes first, copy dregs directly into right side,
then copy auxiliary array

copy

first

second

10/21/2013 38

Some details: saving space / copying

Simplest / worst approach:

 Use a new auxiliary array of size (hi-lo) for every merge

 Returning from a recursive call? Allocate a new array!

Better:

 Reuse same auxiliary array of size n for every merging stage

 Allocate auxiliary array at beginning, use throughout

Best (but a little tricky):

 Don’t copy back – at 2nd, 4th, 6th, … merging stages, use the

original array as the auxiliary array and vice-versa

– Need one copy at end if number of stages is odd

10/21/2013 39

Picture of the “best” from previous slide:

Allocate one auxiliary array, switch each step

First recurse down to lists of size 1

As we return from the recursion, switch off arrays

Arguably easier to code up without recursion at all

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

10/21/2013 40

Linked lists and big data

We defined the sorting problem as over an array, but sometimes

you want to sort linked lists

One approach:

– Convert to array: O(n)

– Sort: O(n log n)

– Convert back to list: O(n)

Or: mergesort works very nicely on linked lists directly

– heapsort and quicksort do not

– insertion sort and selection sort do but they’re slower

Mergesort is also the sort of choice for external sorting

– Linear merges minimize disk accesses

10/21/2013 41

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should

analyze its running time (and space):

To sort n elements, we:

– Return immediately if n=1

– Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation?

10/21/2013 42

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should

analyze its running time (and space):

To sort n elements, we:

– Return immediately if n=1

– Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:

 T(1) = c1

 T(n) = 2T(n/2) + c2n

10/21/2013 43

MergeSort Recurrence

(For simplicity let constants be 1 – no effect on asymptotic answer)

T(1) = 1 So total is 2kT(n/2k) + kn where

T(n) = 2T(n/2) + n n/2k = 1, i.e., log n = k

 = 2(2T(n/4) + n/2) + n That is, 2log n T(1) + n log n

 = 4T(n/4) + 2n = n + n log n

 = 4(2T(n/8) + n/4) + 2n = O(n log n)

 = 8T(n/8) + 3n

 …. (after k expansions)

 = 2kT(n/2k) + kn

10/21/2013 44

Or more intuitively…

This recurrence comes up often enough you should just “know” it’s
O(n log n)

Merge sort is relatively easy to intuit (best, worst, and average):

• The recursion “tree” will have log n height

• At each level we do a total amount of merging equal to n

10/21/2013 45

Quicksort

• Also uses divide-and-conquer

– Recursively chop into halves

– But, instead of doing all the work as we merge together, we’ll

do all the work as we recursively split into halves

– Also unlike MergeSort, does not need auxiliary space

• O(n log n) on average , but O(n2) worst-case 

– MergeSort is always O(nlogn)

– So why use QuickSort?

• Can be faster than mergesort

– Often believed to be faster

– Quicksort does fewer copies and more comparisons, so it

depends on the relative cost of these two operations!

10/21/2013 46

Quicksort overview

1. Pick a pivot element

– Hopefully an element ~median

– Good QuickSort performance depends on good choice of pivot; we’ll see

why later, and talk about good pivot selection later

2. Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

3. Recursively sort A and C

4. The answer is, “as simple as A, B, C”

(Alas, there are some details lurking in this algorithm)

10/21/2013 47

Quicksort: Think in terms of sets

10/21/2013 48

13
81

92

43

65

31 57

26

75
0

S select pivot value

13
81

92

43 65
31

57 26

75
0 S1 S2 partition S

13 43 31 57 26 0

S1
81 92 75 65

S2
QuickSort(S1) and

QuickSort(S2)

13 43 31 57 26 0 65 81 92 75 S Presto! S is sorted

[Weiss]

Quicksort Example, showing recursion

10/21/2013 49

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

MergeSort

Recursion Tree

QuickSort

Recursion Tree

10/21/2013 50

Quicksort Details

We have not yet explained:

• How to pick the pivot element

– Any choice is correct: data will end up sorted

– But as analysis will show, want the two partitions to be about

equal in size

• How to implement partitioning

– In linear time

– In place

10/21/2013 51

Pivots

• Best pivot?

– Median

– Halve each time

• Worst pivot?

– Greatest/least element

– Reduce to problem of size 1 smaller

– O(n2)

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

10/21/2013 52

Quicksort: Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)…

• Pick arr[lo] or arr[hi-1]

– Fast, but worst-case is (mostly) sorted input

• Pick random element in the range

– Does as well as any technique, but (pseudo)random number

generation can be slow

– (Still probably the most elegant approach)

• Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]

– Common heuristic that tends to work well

10/21/2013 53

Partitioning

• That is, given 8, 4, 2, 9, 3, 5, 7 and pivot 5

– Dividing into left half & right half (based on pivot)

• Conceptually simple, but hardest part to code up correctly

– After picking pivot, need to partition

• Ideally in linear time

• Ideally in place

• Ideas?

10/21/2013 54

Partitioning

• One approach (there are slightly fancier ones):

1. Swap pivot with arr[lo]; move it ‘out of the way’

2. Use two fingers i and j, starting at lo+1 and hi-1 (start &

end of range, apart from pivot)

3. Move from right until we hit something less than the pivot;

belongs on left side

Move from left until we hit something greater than the pivot;

belongs on right side
Swap these two; keep moving inward

while (i < j)

 if (arr[j] > pivot) j--

 else if (arr[i] < pivot) i++

 else swap arr[i] with arr[j]

4. Put pivot back in middle (Swap with arr[i])

10/21/2013 55

Quicksort Example

• Step one: pick pivot as median of 3

– lo = 0, hi = 10

10/21/2013 56

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

• Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

Quicksort Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

10/21/2013 57

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than

one swap during partition –

this is a short example

5 1 4 2 0 3 6 9 7 8

Quicksort Analysis

• Best-case?

• Worst-case?

• Average-case?

10/21/2013 58

Quicksort Analysis

• Best-case: Pivot is always the median

 T(0)=T(1)=1

 T(n)=2T(n/2) + n -- linear-time partition

 Same recurrence as mergesort: O(n log n)

• Worst-case: Pivot is always smallest or largest element

 T(0)=T(1)=1

 T(n) = 1T(n-1) + n

 Basically same recurrence as selection sort: O(n2)

• Average-case (e.g., with random pivot)

– O(n log n), not responsible for proof (in text)

10/21/2013 59

Quicksort Cutoffs

• For small n, all that recursion tends to cost more than doing a

quadratic sort

– Remember asymptotic complexity is for large n

– Also, recursive calls add a lot of overhead for small n

• Common engineering technique: switch to a different algorithm

for subproblems below a cutoff

– Reasonable rule of thumb: use insertion sort for n < 10

• Notes:

– Could also use a cutoff for merge sort

– Cutoffs are also the norm with parallel algorithms

• switch to sequential algorithm

– None of this affects asymptotic complexity

10/21/2013 60

Quicksort Cutoff skeleton

10/21/2013 61

void quicksort(int[] arr, int lo, int hi) {

 if(hi – lo < CUTOFF)

 insertionSort(arr,lo,hi);

 else

 …

}

Notice how this cuts out the vast majority of the recursive calls

– Think of the recursive calls to quicksort as a tree

– Trims out the bottom layers of the tree

