CSE 332: Data Abstractions

Lecture 11: More Hashing

Ruth Anderson
Autumn 2013
Announcements

• **Homework 3** – due NOW
• **Project 2** – Phase A due *next* Wednesday Oct 23rd
• **Midterm** – **Monday October 28th during lecture**
• **Homework 4** – due Friday Nov 1st at the BEGINNING of lecture
Today

• Dictionaries
 – Hashing
Hash Tables: Review

• Aim for constant-time (i.e., $O(1)$) find, insert, and delete
 – “On average” under some reasonable assumptions

• A hash table is an array of some fixed size
 – But growable as we’ll see

client hash table library
E int table-index collision? collision resolution

TableSize –1
Hashing Choices

1. Choose a Hash function
2. Choose TableSize
3. Choose a Collision Resolution Strategy from these:
 - Separate Chaining
 - Open Addressing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing

• Other issues to consider:
 - Deletion?
 - What to do when the hash table gets “too full”?
Open Addressing: Linear Probing

- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If $h(key)$ is already full,
 - try $(h(key) + 1) \mod TableSize$. If full,
 - try $(h(key) + 2) \mod TableSize$. If full,
 - try $(h(key) + 3) \mod TableSize$. If full…

- Example: insert 38, 19, 8, 109, 10
Open Addressing: Linear Probing

• Another simple idea: If $h(key)$ is already full,
 – try $(h(key) + 1) \mod TableSize$. If full,
 – try $(h(key) + 2) \mod TableSize$. If full,
 – try $(h(key) + 3) \mod TableSize$. If full...

• Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>38</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Another simple idea: If $h(key)$ is already full,
 - try $(h(key) + 1) \% \text{TableSize}$. If full,
 - try $(h(key) + 2) \% \text{TableSize}$. If full,
 - try $(h(key) + 3) \% \text{TableSize}$. If full…

Example: insert 38, 19, 8, 109, 10
Open Addressing: Linear Probing

• Another simple idea: If \(h(\text{key}) \) is already full,
 – try \((h(\text{key}) + 1) \mod \text{TableSize} \). If full,
 – try \((h(\text{key}) + 2) \mod \text{TableSize} \). If full,
 – try \((h(\text{key}) + 3) \mod \text{TableSize} \). If full…

• Example: insert 38, 19, 8, 109, 10
Open Addressing: Linear Probing

• Another simple idea: If $h(\text{key})$ is already full,
 – try $(h(\text{key}) + 1) \mod \text{TableSize}$. If full,
 – try $(h(\text{key}) + 2) \mod \text{TableSize}$. If full,
 – try $(h(\text{key}) + 3) \mod \text{TableSize}$. If full...

• Example: insert 38, 19, 8, 109, 10
Open addressing

Linear probing is one example of open addressing

In general, open addressing means resolving collisions by trying a sequence of other positions in the table.

Trying the next spot is called probing

- We just did linear probing:
 - \(i^{th}\) probe: \((h(key) + i) \mod TableSize\)

- In general have some probe function \(f\) and:
 - \(i^{th}\) probe: \((h(key) + f(i)) \mod TableSize\)

Open addressing does poorly with high load factor \(\lambda\)

- So want larger tables
- Too many probes means no more \(O(1)\)
Terminology

We and the book use the terms
- “chaining” or “separate chaining”
- “open addressing”

Very confusingly,
- “open hashing” is a synonym for “chaining”
- “closed hashing” is a synonym for “open addressing”
Open Addressing: Linear Probing

What about \texttt{find}? If value is in table? If not there? Worst case?

What about \texttt{delete}?

How does open addressing with linear probing compare to separate chaining?
Open Addressing: Other Operations

insert finds an open table position using a probe function

What about *find*?
- Must use same probe function to “retrace the trail” for the data
- Unsuccessful search when reach empty position

What about *delete*?
- *Must* use “lazy” deletion. Why?
 - Marker indicates “no data here, but don’t stop probing”

| 10 | x | / | 23 | / | / | 16 | x | 26 |

- Note: *delete* with chaining is plain-old list-remove
Primary Clustering

It turns out linear probing is a *bad idea*, even though the probe function is quick to compute (a good thing)

• Tends to produce *clusters*, which lead to long probe sequences
• Called *primary clustering*
• Saw the start of a cluster in our linear probing example
Analysis of Linear Probing

• **Trivial fact:** For any $\lambda < 1$, linear probing will find an empty slot
 – It is “safe” in this sense: no infinite loop unless table is full

• **Non-trivial facts** we won’t prove:
 Average # of probes given λ (in the limit as $\text{TableSize} \to \infty$)
 – Unsuccessful search: $\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right)$
 – Successful search: $\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right)$

• This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)
Analysis in chart form

• Linear-probing performance degrades rapidly as table gets full
 – (Formula assumes “large table” but point remains)

• By comparison, separate chaining performance is linear in λ and has no trouble with $\lambda > 1$
Open Addressing: Linear probing

\[(h(\text{key}) + f(i)) \mod \text{TableSize}\]

- For linear probing:
 \[f(i) = i\]

- So probe sequence is:
 - 0th probe: \(h(\text{key}) \mod \text{TableSize}\)
 - 1st probe: \((h(\text{key}) + 1) \mod \text{TableSize}\)
 - 2nd probe: \((h(\text{key}) + 2) \mod \text{TableSize}\)
 - 3rd probe: \((h(\text{key}) + 3) \mod \text{TableSize}\)
 - ...
 - \(ith\) probe: \((h(\text{key}) + i) \mod \text{TableSize}\)
Open Addressing: Quadratic probing

- We can avoid primary clustering by changing the probe function...

\[(h(key) + f(i)) \% \text{TableSize}\]

- For quadratic probing:

\[f(i) = i^2\]

- So probe sequence is:
 - 0th probe: \(h(key) \% \text{TableSize}\)
 - 1st probe: \((h(key) + 1) \% \text{TableSize}\)
 - 2nd probe: \((h(key) + 4) \% \text{TableSize}\)
 - 3rd probe: \((h(key) + 9) \% \text{TableSize}\)
 - ...
 - ith probe: \((h(key) + i^2) \% \text{TableSize}\)

- Intuition: Probes quickly “leave the neighborhood”
Quadratic Probing Example

Table Size = 10

Insert:
- 89
- 18
- 49
- 58
- 79

Ith probe: \((h(key) + i^2) \mod TableSize\)
Quadratic Probing Example

TableSize = 10

insert(89)
Quadratic Probing Example

Table Size $= 10$

- `insert(89)`
- `insert(18)`

<table>
<thead>
<tr>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Quadratic Probing Example

TableSize = 10

insert(89)
insert(18)
insert(49)
Quadratic Probing Example

Table Size = 10

- insert(89)
- insert(18)
- insert(49)

49 % 10 = 9 **collision!**

(49 + 1) % 10 = 0

- insert(58)
Quadratic Probing Example

TableSize = 10
insert(89)
insert(18)
insert(49)
insert(58)

58 % 10 = 8 collision!
(58 + 1) % 10 = 9 collision!
(58 + 4) % 10 = 2
insert(79)
 Quadratic Probing Example

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TableSize = 10

- insert(89)
- insert(18)
- insert(49)
- insert(58)
- insert(79)

- 79 % 10 = 9 collision!
- (79 + 1) % 10 = 0 collision!
- (79 + 4) % 10 = 3
Another Quadratic Probing Example

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>Insert</th>
<th>Hash Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>76 % 7 = 6</td>
</tr>
<tr>
<td>40</td>
<td>40 % 7 = 5</td>
</tr>
<tr>
<td>48</td>
<td>48 % 7 = 6</td>
</tr>
<tr>
<td>5</td>
<td>5 % 7 = 5</td>
</tr>
<tr>
<td>55</td>
<td>55 % 7 = 6</td>
</tr>
<tr>
<td>47</td>
<td>47 % 7 = 5</td>
</tr>
</tbody>
</table>
Another Quadratic Probing Example

TableSize = 7

Insert:

76 \quad (76 \% 7 = 6)

40 \quad (40 \% 7 = 5)

48 \quad (48 \% 7 = 6)

5 \quad (5 \% 7 = 5)

55 \quad (55 \% 7 = 6)

47 \quad (47 \% 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>Index</th>
<th>Key</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>(40 % 7 = 5)</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>(48 % 7 = 6)</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
<td>(76 % 7 = 6)</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>(47 % 7 = 5)</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>(55 % 7 = 6)</td>
</tr>
</tbody>
</table>

ith probe: \(h(key) + i^2 \) \% TableSize
Another Quadratic Probing Example

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

76 \((76 \% 7 = 6) \)
40 \((40 \% 7 = 5) \)
48 \((48 \% 7 = 6) \)
5 \((5 \% 7 = 5) \)
55 \((55 \% 7 = 6) \)
47 \((47 \% 7 = 5) \)

ith probe: \(h(key) + i^2 \) \% TableSize
Another Quadratic Probing Example

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

76 \quad (76 \% 7 = 6)

40 \quad (40 \% 7 = 5)

48 \quad (48 \% 7 = 6)

5 \quad (5 \% 7 = 5)

55 \quad (55 \% 7 = 6)

47 \quad (47 \% 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

ith probe: \(h(key) + i^2 \mod \text{TableSize}\)

76 \(\mod 7 = 6\)
40 \(\mod 7 = 5\)
48 \(\mod 7 = 6\)
5 \(\mod 7 = 5\)
55 \(\mod 7 = 6\)
47 \(\mod 7 = 5\)
Another Quadratic Probing Example

TableSize = 7

Insert:

- 76 \ (76 \mod 7 = 6)
- 40 \ (40 \mod 7 = 5)
- 48 \ (48 \mod 7 = 6)
- 5 \ (5 \mod 7 = 5)
- 55 \ (55 \mod 7 = 6)
- 47 \ (47 \mod 7 = 5)

(47 + 1) \mod 7 = 6 \text{ collision!}
(47 + 4) \mod 7 = 2 \text{ collision!}
(47 + 9) \mod 7 = 0 \text{ collision!}
(47 + 16) \mod 7 = 0 \text{ collision!}
(47 + 25) \mod 7 = 2 \text{ collision!}

Will we ever get a 1 or 4?!?
Another Quadratic Probing Example

Insert(47) will always fail here. Why?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

For all n, $(5 + n^2) \mod 7$ is 0, 2, 5, or 6

Proof uses induction and

$$(5 + n^2) \mod 7 = (5 + (n - 7)^2) \mod 7$$

In fact, for all c and k,

$$(c + n^2) \mod k = (c + (n - k)^2) \mod k$$
From bad news to good news

Bad News:
• After TableSize quadratic probes, we cycle through the same indices

Good News:
• If TableSize is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in at most $\frac{\text{TableSize}}{2}$ probes
• So: If you keep $\lambda < \frac{1}{2}$ and TableSize is prime, no need to detect cycles
• Proof is posted in lecture11.txt
 – Also, slightly less detailed proof in textbook
 – For prime T and $0 \leq i,j \leq T/2$ where $i \neq j$,
 $$(h(\text{key}) + i^2) \ % \ T \neq (h(\text{key}) + j^2) \ % \ T$$
That is, if T is prime, the first $T/2$ quadratic probes map to different locations
Quadratic Probing:
Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - show for all $0 \leq i, j \leq \text{size}/2$ and $i \neq j$
 $$(h(x) + i^2) \mod \text{size} \neq (h(x) + j^2) \mod \text{size}$$
 - by contradiction: suppose that for some $i \neq j$:
 $$(h(x) + i^2) \mod \text{size} = (h(x) + j^2) \mod \text{size}$$
 $$\Rightarrow i^2 \mod \text{size} = j^2 \mod \text{size}$$
 $$\Rightarrow (i^2 - j^2) \mod \text{size} = 0$$
 $$\Rightarrow [(i + j)(i - j)] \mod \text{size} = 0$$
 BUT size does not divide $(i-j)$ or $(i+j)$

How can $i+j = 0$ or $i+j = \text{size}$ when:
- $i \neq j$ and $0 \leq i, j \leq \text{size}/2$?
Similarly how can $i-j = 0$ or $i-j = \text{size}$?
Clustering reconsidered

• Quadratic probing does not suffer from primary clustering: No problem if keys initially hash to the same neighborhood

• But it’s no help if keys initially hash to the same index
 – Any 2 keys that hash to the same value will have the same series of moves after that
 – Called secondary clustering

• Can avoid secondary clustering with a probe function that depends on the key: double hashing…
Open Addressing: Double hashing

Idea: Given two good hash functions h and g, it is very unlikely that for some key, $h(key) == g(key)$

$(h(key) + f(i)) \%\text{ TableSize}$

- For double hashing:

 $f(i) = i* g(key)$

- So probe sequence is:
 - 0th probe: $h(key) \%\text{ TableSize}$
 - 1st probe: $(h(key) + g(key)) \%\text{ TableSize}$
 - 2nd probe: $(h(key) + 2*g(key)) \%\text{ TableSize}$
 - 3rd probe: $(h(key) + 3*g(key)) \%\text{ TableSize}$
 - ...
 - i^{th} probe: $(h(key) + i*g(key)) \%\text{ TableSize}$

- Detail: Make sure $g(key)$ can’t be 0
Open Addressing: Double Hashing

T = 10 (TableSize)

Hash Functions:

\[h(key) = key \mod T \]
\[g(key) = 1 + ((key/T) \mod (T-1)) \]

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13 28 33 147 43
Double Hashing

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147
43

T = 10 (TableSize)

Hash Functions:

\[h(\text{key}) = \text{key} \mod T \]

\[g(\text{key}) = 1 + \left(\frac{\text{key}}{T}\right) \mod (T-1) \]
Double Hashing

T = 10 (TableSize)

Hash Functions:

\[
h(key) = key \mod T
\]

\[
g(key) = 1 + ((key/T) \mod (T-1))
\]

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147
43
Double Hashing

T = 10 (TableSize)

Hash Functions:

\[h(key) = key \mod T \]
\[g(key) = 1 + ((key/T) \mod (T-1)) \]

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
g(33) = 1 + 3 \mod 9 = 4

28

33 → g(33) = 1 + 3 \mod 9 = 4

147

43
Double Hashing

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147
43

T = 10 (TableSize)

Hash Functions:

\[h(key) = key \mod T \]

\[g(key) = 1 + \left(\frac{key}{T}\right) \mod (T-1) \]

147 \rightarrow g(147) = 1 + 14 \mod 9 = 6
Double Hashing

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1))

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147

8
147

We have a problem:

3 + 0 = 3
3 + 5 = 8
3 + 15 = 18
3 + 10 = 13
3 + 20 = 23
Double-hashing analysis

• **Intuition**: Since each probe is “jumping” by $g(key)$ each time, we “leave the neighborhood” and “go different places from other initial collisions”

But, as in quadratic probing, we could still have a problem where we are not "safe" due to an infinite loop despite room in table

 – It is known that this cannot happen in at least one case:

 For primes p and q such that $2 < q < p$

 \[h(key) = key \% p \]

 \[g(key) = q - (key \% q) \]
More double-hashing facts

• Assume “uniform hashing”
 – Means probability of $g(\text{key1}) \% p \equiv g(\text{key2}) \% p$ is $1/p$

• Non-trivial facts we won’t prove:
 Average # of probes given λ (in the limit as $\text{TableSize} \to \infty$)
 – Unsuccessful search (intuitive):
 $$\frac{1}{1-\lambda}$$
 – Successful search (less intuitive):
 $$\frac{1}{\lambda} \log_e \left(\frac{1}{1-\lambda} \right)$$

• Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad
Charts

Uniform Hashing

Load Factor

Linear Probing

Load Factor
Where are we?

• **Separate Chaining** is easy
 – *find, delete* proportional to load factor on average
 – *insert* can be constant if just push on front of list
• **Open addressing** uses probing, has clustering issues as table fills

Why use it:
 – Less memory allocation?
 • Some run-time overhead for allocating linked list (or whatever) nodes; open addressing could be faster
 – Easier data representation?
• Now:
 – Growing the table when it gets too full (aka “rehashing”)
 – Relation between hashing/comparing and connection to Java
Rehashing

• As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything over

• With separate chaining, we get to decide what “too full” means
 – Keep load factor reasonable (e.g., < 1)?
 – Consider average or max size of non-empty chains?

• For open addressing, half-full is a good rule of thumb

• New table size
 – Twice-as-big is a good idea, except, uhm, that won’t be prime!
 – So go about twice-as-big
 – Can have a list of prime numbers in your code since you probably won’t grow more than 20-30 times, and then calculate after that
More on rehashing

• What if we copy all data to the same indices in the new table?
 – Will not work; we calculated the index based on TableSize

• Go through table, do standard insert for each into new table
 – Iterate over old table: O(n)
 – n inserts / calls to the hash function: n \cdot O(1) = O(n)

• Is there some way to avoid all those hash function calls?
 – Space/time tradeoff: Could store $h(key)$ with each data item
 – Growing the table is still $O(n)$; only helps by a constant factor
Hashing and comparing

• Our use of int key can lead to us overlooking a critical detail:
 – We initially hash E to get a table index
 – While chaining or probing we compare to E
 • Just need equality testing (i.e., “is it what I want”)

• So a hash table needs a hash function and a comparator
 – In Project 2, you will use two function objects
 – The Java library uses a more object-oriented approach:
 each object has an equals method and a hashCode method

```java
class Object {
    boolean equals(Object o) {...}
    int hashCode() {...}
    ...
}
```
Equal objects must hash the same

- The Java library (and your project hash table) make a very important assumption that clients must satisfy…

- Object-oriented way of saying it:

  ```java
  if (a.equals(b), then we must require
  a.hashCode() == b.hashCode()
  ```

- Function object way of saying it:

  ```java
  if c.compare(a,b) == 0, then we must require
  h.hash(a) == h.hash(b)
  ```

- If you ever override equals
 - You need to override hashCode also in a consistent way
 - See CoreJava book, Chapter 5 for other "gotchas" with equals
By the way: comparison has rules too

We have not emphasized important “rules” about comparison for:
- All our dictionaries
- Sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all \(a, b,\) and \(c,\)
- If \(\text{compare}(a,b) < 0,\) then \(\text{compare}(b,a) > 0\)
- If \(\text{compare}(a,b) == 0,\) then \(\text{compare}(b,a) == 0\)
- If \(\text{compare}(a,b) < 0\) and \(\text{compare}(b,c) < 0,\)
 then \(\text{compare}(a,c) < 0\)
A Generally Good hashCode()

int result = 17; // start at a prime

foreach field f
 int fieldHashcode =
 boolean: (f ? 1: 0)
 byte, char, short, int: (int) f
 long: (int) (f ^ (f >>> 32))
 float: Float.floatToIntBits(f)
 double: Double.doubleToLongBits(f), then above
 Object: object.hashCode()

 result = 31 * result + fieldHashcode;

return result;
Final word on hashing

• The hash table is one of the most important data structures
 – Efficient find, insert, and delete
 – Operations based on sorted order are not so efficient
 – Useful in many, many real-world applications
 – Popular topic for job interview questions
• Important to use a good hash function
 – Good distribution, Uses enough of key’s values
 – Not overly expensive to calculate (bit shifts good!)
• Important to keep hash table at a good size
 – Prime #
 – Preferable \(\lambda \) depends on type of table
• What we skipped: Perfect hashing, universal hash functions, hopscotch hashing, cuckoo hashing
• Side-comment: hash functions have uses beyond hash tables
 – Examples: Cryptography, check-sums