CSE 332: Data Abstractions

Lecture 9: B Trees

Ruth Anderson
Autumn 2013

Announcements

* Project 2 — posted!
Partner selection due by 11pm Wed 10/16 at the latest.

« Homework 3 — due Friday 10/18

10/14/2013

Today

* Dictionaries
— B-Trees

10/14/2013

Our goal

* Problem: A dictionary with so much data most of it is on disk

« Desire: A balanced tree (logarithmic height) that is even
shallower than AVL trees so that we can minimize disk
accesses and exploit disk-block size

* A key idea: Increase the branching factor of our tree

10/14/2013

M-ary Search Tree

« Build some sort of search tree with branching factor M:
— Have an array of sorted children (Node[])

— Choose M to fit snugly into a disk block (1 access for array)

55600

Perfect tree of height h has (M"*1-1)/(M-1) nodes (textbook, page 4)

What is the height of this tree?
What is the worst case running time of find?

10/14/2013 5

M-ary Search Tree
(J

A7 S/ N/ 7\
00‘0‘00 00‘0‘00 00‘0‘00 00‘0‘00 00‘0‘00
 #hops for £ind?

— If we have a balanced M-ary tree:

— Approx. logy, h hops instead of 1og, n (for balanced BST)

— Example: M = 256 (=28) and n = 240that’s 5 hops instead of 40 hops
« Sounds good, but how do we decide which branch to take?

— Binary tree: Less than/greater than node value?

— M-ary: Inrange 1? In range 27 In range 372... In range M?
* Runtime of £ind if balanced: O(1og, M 1og,, N)

- log,, n is the height we traverse.

— log,M: At each step, find the correct child branch to take using binary

search among the M options!
10/14/2013 6

Questions about M-ary search trees

 What should the order property be?
 How would you rebalance (ideally without more disk accesses)?

« Storing real data at inner-nodes (like we do in a BST) seems kind of
wasteful...

— To access the node, will have to load the data from disk,
even though most of the time we won't use it!!

— Usually we are just “passing through™ a node on the way to the
value we are actually looking for.

So let’s use the branching-factor idea, but for a different kind of
balanced tree:

— Not a binary search tree
— But still logarithmic height for any M > 2

10/14/2013 7

B+ Trees (we and the book say “B Trees”)

Two types of nodes: internal nodes
& leaves

Each internal node has room for up 3070120 21
to M-1 keys and M children
— No other data; all data at the
leaves!
Order property:
Subtree between keys a and b

: : 3X<T 7x<1212<x<21 21X
contains only data that is > a

and < b (notice the >)

Leaf nodes have up to L sorted data Remember:

items *Leaves store data
As usual, we'll ignore the “along for *Internal nodes are
the ride” data in our examples 'signposts’

— Remember no data at non-leaves

10/14/2013 8

Find

LA

X<3 3X<T 7<x<1212<x<2]1 21X

o Different from BST In that we don’t store data at internal nodes

« But £ind is still an easy root-to-leaf recursive algorithm

— At each internal node do binary search on (up to) M-1 keys to
find the branch to take

— At the leaf do binary search on the (up to) L data items

« But to get logarithmic running time, we need a balance condition...

10/14/2013 9

Structure Properties

« Root (special case)

— If tree has < L items, root is a leaf (occurs when starting up,
otherwise unusual)

— Else has between 2 and M children

 Internal nodes
— Have between| M/2 | and M children, i.e., at least half full

e Leaf nodes
— All leaves at the same depth
— Have between|[L/2]and L data items, i.e., at least half full

Any M > 2 and L will work, but:

We pick M and L based on disk-block size
10/14/2013 10

Note on notation: Inner nodes drawn horizontally,
leaves vertically to distinguish. Include empty cells

Example

Suppose M=4 (max # pointers in internal node)
and L=5 (max # data items at |eaf)

— All internal nodes have at least 2 children
— All leaves have at least 3 data items (only showing keys)
— All leaves at same depth

12§44 1
6 20] 27 34 5
1 6 12| (20 [27] [34 44 | | 50
2 8 14| |22 [28] |38 47 | [60
4 9 16 | |24 | [32] |39 49 | [70
10 17 41
19

10/14/2013 11

Balanced enough

Not hard to show height h is logarithmic in number of data items n
« LetM>2 (if M =2, then a list tree is legal — no good!)

« Because all nodes are at least half full (except root may have
only 2 children) and all leaves are at the same level, the
minimum number of data items n for a height h>0 tree is...

n> 2 [m2]" 2]

\ JL_J
| |

minimum number mMinimum data
of leaves per leaf

10/14/2013

12

Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

« Maximum height of AVL tree?

« Maximum height of B tree with M=128 and L=647

10/14/2013

13

Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

« Maximum height of AVL tree?
— Recall S(h) =1 + S(h-1) + S(h-2)
— lecture7.xIsx reports: 37

« Maximum height of B tree with M=128 and L=647
— Recall (2 [M/2]01)[L/2]
— lecture9.xIsx reports: 5 (and 4 is more likely)
— Also not difficult to compute via algebra

10/14/2013

14

Disk Friendliness

What makes B trees so disk friendly?

« Many keys stored in one internal node
— All brought into memory in one disk access
 |IF we pick M wisely

— Makes the binary search over M-1 keys totally worth it
(insignificant compared to disk access times)

* Internal nodes contain only keys

— Any £ind wants only one data item; wasteful to load
unnecessary items with internal nodes

— So only bring one leaf of data items into memory
— Data-item size doesn'’t affect what M is

10/14/2013

15

Maintaining balance

« So this seems like a great data structure (and it is)

« But we haven’t implemented the other dictionary operations yet
— insert
— delete

« As with AVL trees, the hard part is maintaining structure properties
— Example: for insert, there might not be room at the correct
leaf

10/14/2013 16

Building a B-Tree (insertions)

3 3 3

Insert(3 Insert(18 Insert(14
()> (2 18 (2 14
18

The empty B-
Tree (the root
will be a leaf at
the beginning)

Just need to keep data
in order

M=31L-=3

10/14/2013 17

S

3 3
Inse rt(302
14 14 > 14 | |30
18 18
??7?7 130

*When we ‘overflow’ a leaf, we split it into 2 leaves
*Parent gains another child
*If there is no parent (like here), we create one; how do we pick the key
shown in it?
*Smallest element in right tree

10/14/2013

Split leaf again

FO O CEn

Inse rt(322 Inse rt(36z

14 | |30 14 | |30 14 | 130 | |36

32
18 § 32
Insert(15)

3 18 | |32
14 |1 |30 | |36

=31L=3
15

10/14/2013 19

! 18 ! 32 !
3 18 | |32
14 1130 | |36
15

Inse rt(162

s 1

Split the internal nod

!18!32!
3 18 | |32

14

30

36

15

16

15

I

What
now?

15

l
1!8 i 3!2

(D

!15 I !32 I<—

(in this case, the root)

M=31L-=3
10/14/2013

14

16

30 | |36

20

s

Insert(12,40,45,

18

14

16

30

36

M=31

= 3

10/14/2013

s,

!15
3

18

40

12

16

30

36

45

14

38

Note: Given the leaves and the structure of the tree, we

can always fill in internal node keys;

‘the smallest value in my right branch’

21

Insertion Algorithm

1. Insertthe data in its leaf in sorted order

2. Ifthe leaf now has L+1 items, overflow!

— Split the leaf into two nodes:
Original leaf with [(z+1) /2] smaller items

« New leaf with| (z+1) /2]=[z/2] larger items
— Attach the new child to the parent
« Adding new key to parent in sorted order

3. |If step (2) caused the parent to have M+1 children, overflow!

10/14/2013

22

Insertion algorithm continued

3. Ifaninternal node has M+1 children
— Split the node into two nodes
Original node with [(M+1) /2] smaller items

« Newnode with| (M+1) /2] = [M/2] larger items
— Attach the new child to the parent
« Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too
— So repeat step 3 up the tree until a node doesn’t overflow
— If the root overflows, make a new root with two children
 This is the only case that increases the tree height

10/14/2013 23

Efficiency of insert

* Find correct leaf: O(1og, M logy, n)

* Insertinleaf: O(L)

« Split leaf: O(L)

« Split parents all the way up to root: O(M log,, n)

Total: O(L + M logy, n)

But it's not that bad:

— Splits are not that common (only required when a node is FULL,
M and L are likely to be large, and after a split, will be half empty)

— Splitting the root is extremely rare
— Remember disk accesses were the name of the game:
O(logy Nn)

10/14/2013 24

B-Tree Reminder: Another dictionary

» Before we talk about deletion, just keep in mind overall idea:

Large data sets won't fit entirely in memory

Disk access is slow

Set up tree so we do one disk access per node in tree
Then our goal is to keep tree shallow as possible

Balanced binary tree is a good start, but we can do better
than log,n height

In an M-ary tree, height drops to logyn
* Why not set M really really high? Height 1 tree...
* Instead, set M so that each node fits in a disk block

10/14/2013

25

And Now for Deletion...

Delete(32)

1
!15]
3 15

12 | |16

14

M=31L=3
10/14/2013

>

18

!\15

o |
! 32 [40 !
18 | 32 | |40
30 | |36 | |45
38

Easy case: Leaf still has enough data; just remove

3 15
12 | |16
14

L1

18

36

40

30

38

45

26

Delete(15)

8

1
on
3 15

12 | |16

14

M=31L-=3
10/14/2013

;

1

!36 40
8 | |36

40

8

30

38

45

1

12

14

;

1

!36 40
8 | |36

40

30

38

45

Is there a problem?

8

1
!16]
3 16

12

14

M=31L=3

10/14/2013

;

1

!36 40
8 | |36

40

8

30

38

45

1

12

16

Adopt from neighbor!

;

1

!36 40
8 | |36

40

30

38

45

28

Delete(16)

8

1
! ull |
3 14

12 | |16

M=31L-=3
10/14/2013

;

1

!36 40
8 | |36

40

30

38

45

>

18

SEES

3

14

12

18

36

40

30

38

45

Is there a problem?

29

18

!l4
3

14

12

L

Il
01

18

36

40

3

18

36

40

30

38

45

12

30

38

45

14

M=31L=3

10/14/2013

Merge with neighbor!

But hey, Is there a problem? 30

! (111 a("H '

18 | |36 | |40

12 30|38 | [45 12 1 |30 38 | |45

14 14

M=31 =3 Adopt from neighbor!
10/14/2013 31

Delete(14)

36 I > 36 I
ONNCREENORNON
3 18 36 | |40 3 18 36 | |40

12 1 |30 38 | |45 12 | |30 38 | |45

14

M=31L-=3
10/14/2013 32

Delete(18)

36 I s 36 I
! s] ! of | ! i ! of |
3 | |18 36 | |40 3 |30 36 | |40

12 1 |30 38 | |45 12 38 | |45

Is there a problem?
M=31L=3

10/14/2013 33

RETRRTEREY

36 | |40
12 38 | |45 12 38 | |45
30

Merge with neighbor!
M=31L-=3

10/14/2013 But hey, Is there a problem? 34

12
30

M=31L=3

10/14/2013

38

45

!

a &l - L
!] !40] !36 40
3 36 | |40 3 36

40

12

38

45

30

Merge with neighbor!

But hey, Is there a problem? 35

E

o

3 36 | (40
12 | |38 | |45
30

M=31L-=3
10/14/2013

Pull out the root!

v

3 36 | (40
12 | |38 | |45
30

36

Deletion Algorithm, part 1

1. Remove the data from its leaf

2. Ifthe leaf now has[/2] - 1, underflow!

If a neighbor has > [L/2] items, adopt and update parent
Else merge node with neighbor

« Guaranteed to have a legal number of items
 Parent now has one less node

3. If step (2) caused the parent to have[M/2] - 1 children,
underflow!

10/14/2013

37

Deletion algorithm (continued)

3. Ifaninternal node has|[M/2] - 1 children
— Ifaneighbor has > [M/2] items, adopt and update parent
— Else merge node with neighbor
« Guaranteed to have a legal number of items

« Parent now has one less node, may need to continue
up the tree

If we merge all the way up through the root, that’s fine unless the
root went from 2 childrento 1

— In that case, delete the root and make child the root
— This is the only case that decreases tree height

10/14/2013 38

Worst-Case Efficiency of Delete

* Find correct leaf: O(log, M 1log,, n)
 Remove from leatf: O(L)

« Adopt from or merge with neighbor: O(L)
« Adopt or merge all the way up to root: O(M log,, n)

Total: O(L + M 1og,, n)
But it's not that bad:

— Merges are not that common
— Disk accesses are the name of the game: O(1ogy, n)

10/14/2013 39

Insert vs delete comparison

Insert

* Find correct leaf:

* |nsert in leaf:

« Split leaf:

« Split parents all the way up to root:

Delete

* Find correct leaf:

« Remove from leaf:

« Adopt/merge from/with neighbor leaf:
« Adopt or merge all the way up to root:

10/14/2013

O(log, M 1ogy n)
O(L)

O(L)

O(M logy n)

O(log, M logy n)
O(L)

O(L)

O(M 1logy n)

40

B Trees In Java?

For most of our data structures, we have encouraged writing high-
level, reusable code, such as in Java with generics

It is worthwhile to know enough about “how Java works™ to
understand why this is probably a bad idea for B trees

— If you just want a balanced tree with worst-case logarithmic
operations, no problem

 If M=3, this is called a 2-3 tree
* If M=4, this is called a 2-3-4 tree
— Assuming our goal is efficient number of disk accesses
« Java has many advantages, but it wasn’t designed for this

The key issue Is extra levels of indirection...

10/14/2013 41

Nalve approach in Java

Even if we assume data items have int keys, you cannot get the
data representation you want for “really big data”

interface Keyed {
int getKey() ;

}

class BTreeNode<E implements Keyed> ({
static final int M = 128;

int[] keys = new int[M-1];
BTreeNode<E>[] children = new BTreeNode[M];
int numChildren = 0;

}
class BTreeleaf<E implements Keyed> {

static final int L = 32;
E[] data = (E[])new Object[L];
int numItems = 0;

}

10/14/2013 42

All the red references indicate
“‘unnecessary” indirection that

L nnecessary’ indirection
What that looks like in Java oreyamming language.

BTreeNode (Interior node)

\

..112/12045| (array of M-1 ints)

/ o0 (array of M refs to
keys — / 1 BTreeNodes)
children — / j X \
numChildren 70

BTreeLeaf (Leaf node)

T (array of L refs to
B
/ data objects)
data —
numItems 20 Note: data objects
not in contiguous

memory.

10/14/2013

The moral

The whole idea behind B trees was to keep related data in
contiguous memory

« But that's “the best you can do” in Java
— Again, the advantage is generic, reusable code

— But for your performance-critical web-index, not the way to
Implement your B-Tree for terabytes of data

« Otherlanguages (e.g., C++) have better support for “flattening
objects into arrays”

 Levels of indirection matter!

10/14/2013 44

Conclusion: Balanced Trees

« Balanced trees make good dictionaries because they guarantee
logarithmic-time £ind, insert, and delete

— Essential and beautiful computer science
— But only if you can maintain balance within the time bound

- AVL trees maintain balance by tracking height and allowing all
children to differ in height by at most 1

- B trees maintain balance by keeping nodes at least half full and
all leaves at same height

« Other great balanced trees (see text; worth knowing they exist)
— Red-black trees: all leaves have depth within a factor of 2

— Splay trees: self-adjusting; amortized guarantee; no extra
space for height information

10/14/2013 45

