
CSE 332: Data Abstractions

Lecture 8: Memory Hierarchy & B Trees

Ruth Anderson

Autumn 2013

Announcements

• Homework 2 – due NOW!

• Homework 3 – coming soon!

• Project 2 – posted!

Partner selection due by 11pm Wed 10/16 at the latest.

10/11/2013 2

Today

• Dictionaries

– AVL Trees (finish up)

• The Memory Hierarchy and you

• Dictionaries

– B-Trees

10/11/2013 3

Now what?

• We have a data structure for the dictionary ADT (AVL tree) that
has worst-case O(log n) behavior

– One of several interesting/fantastic balanced-tree

approaches

• We are about to learn another balanced-tree approach: B Trees

• First, to motivate why B trees are better for really large

dictionaries (say, over 1GB = 230 bytes), need to understand

some memory-hierarchy basics

– Don’t always assume “every memory access has an

unimportant O(1) cost”

– Learn more in CSE351/333/471, focus here on relevance to

data structures and efficiency

10/11/2013 4

10/11/2013

Why do we need to know about the

memory hierarchy?

• One of the assumptions that Big-Oh makes is that all operations

take the same amount of time.

• Is that really true?

5

A typical hierarchy
“Every desktop/laptop/server is

different” but here is a plausible

configuration these days

10/11/2013 6

 CPU

Disk: 1TB = 240

Main memory: 2GB = 231

L2 Cache: 2MB = 221

L1 Cache: 128KB = 217

instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 instructions

 get data in L2: 225/sec = 30

 instructions

 get data in main memory:

 222/sec = 250 instructions

 get data from “new

 place” on disk:

 27/sec =8,000,000

 instructions

Morals

It is much faster to do: Than:

 5 million arithmetic ops 1 disk access

 2500 L2 cache accesses 1 disk access

 400 main memory accesses 1 disk access

Why are computers built this way?

– Physical realities (speed of light, closeness to CPU)

– Cost (price per byte of different technologies)

– Disks get much bigger not much faster

• Spinning at 7200 RPM accounts for much of the

slowness and unlikely to spin faster in the future

– Speedup at higher levels (e.g. a faster processor) makes

lower levels relatively slower

– Later in the course: more than 1 CPU!

10/11/2013 7

“Fuggedaboutit”, usually

The hardware automatically moves data into the caches from main

memory for you

– Replacing items already there

– So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating system to

open a file or database to access some data)

So most code “just runs” but sometimes it’s worth designing

algorithms / data structures with knowledge of memory hierarchy

– And when you do, you often need to know one more thing…

10/11/2013 8

How does data move up the hierarchy?

• Moving data up the memory hierarchy is slow because of latency

(think distance-to-travel)

– Since we’re making the trip anyway, may as well carpool

• Get a block of data in the same time it would take to get a byte

– Sends nearby memory because:

• It’s easy

• And likely to be asked for soon (think fields/arrays)

• Side note: Once a value is in cache, may as well keep it around for

awhile; accessed once, a particular value is more likely to be

accessed again in the near future (more likely than some random

other value)

10/11/2013 9
Temporal locality

Spatial Locality

10/11/2013

Locality

Temporal Locality (locality in time) – If an address is
referenced, it will tend to be referenced again soon.

Spatial Locality (locality in space) – If an address is
referenced, addresses that are close by will tend to
be referenced soon.

10

Block/line size

• The amount of data moved from disk into memory is called the

“block” size or the “page” size

– Not under program control

• The amount of data moved from memory into cache is called the

cache “line” size

– Not under program control

10/11/2013 11

Connection to data structures

• An array benefits more than a linked list from block moves

– Language (e.g., Java) implementation can put the list nodes

anywhere, whereas array is typically contiguous memory

• Suppose you have a queue to process with 223 items of 27 bytes

each on disk and the block size is 210 bytes

– An array implementation needs 220 disk accesses

• If “perfectly streamed”, > 4 seconds

• If “random places on disk”, 8000 seconds (> 2 hours)

– A list implementation in the worst case needs 223 “random”

disk accesses (> 16 hours) – probably not that bad

• Note: “array” doesn’t necessarily mean “good”

– Binary heaps “make big jumps” to percolate (different block)

10/11/2013 12

BSTs?

• Looking things up in balanced binary search trees is O(log n), so

even for n = 239 (512GB) we need not worry about minutes or

hours

• Still, number of disk accesses matters:

– Pretend for a minute we had an AVL tree of height 55

– The total number of nodes could be?_________

– Most of the nodes will be on disk: the tree is shallow, but it is

still many gigabytes big so the entire tree cannot fit in memory

• Even if memory holds the first 25 nodes on our path, we

still potentially need 30 disk accesses if we are traversing

the entire height of the tree.

10/11/2013 13

Note about numbers; moral

• Note: All the numbers in this lecture are “ballpark” “back of the

envelope” figures

• Moral: Even if they are off by, say, a factor of 5, the moral is the

same:

 If your data structure is mostly on disk,

 you want to minimize disk accesses

• A better data structure in this setting would exploit the block size

and relatively fast memory access to avoid disk accesses…

10/11/2013 14

Trees as Dictionaries

(N= 10 million) [Example from Weiss]

In worst case, each node access is a disk access,

number of accesses:

 # Disk accesses

• BST

• AVL

• B Tree

10/11/2013 15

Our goal

• Problem: A dictionary with so much data most of it is on disk

• Desire: A balanced tree (logarithmic height) that is even

shallower than AVL trees so that we can minimize disk

accesses and exploit disk-block size

• A key idea: Increase the branching factor of our tree

10/11/2013 16

