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Announcements 

• Homework 2 – due NOW! 

• Homework 3 – coming soon! 

• Project 2 – posted!   

Partner selection due by 11pm Wed 10/16 at the latest. 
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Today 

• Dictionaries 

– AVL Trees (finish up) 

   

• The Memory Hierarchy and you 

 

• Dictionaries 

– B-Trees 

 

10/11/2013 3 



Now what? 

• We have a data structure for the dictionary ADT (AVL tree) that 
has worst-case O(log n) behavior 

– One of several interesting/fantastic balanced-tree 

approaches 
 

• We are about to learn another balanced-tree approach: B Trees 
 

• First, to motivate why B trees are better for really large 

dictionaries (say, over 1GB = 230 bytes), need to understand 

some memory-hierarchy basics 

– Don’t always assume “every memory access has an 

unimportant O(1) cost” 

– Learn more in CSE351/333/471, focus here on relevance to 

data structures and efficiency 
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Why do we need to know about the 

memory hierarchy? 

• One of the assumptions that Big-Oh makes is that all operations 

take the same amount of time. 

• Is that really true? 
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A typical hierarchy 
“Every desktop/laptop/server is 

different” but here is a plausible 

configuration these days 
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       CPU 

Disk: 1TB = 240 

Main memory: 2GB = 231 

L2 Cache: 2MB = 221 

L1 Cache: 128KB = 217 

instructions (e.g., addition): 230/sec 
 

get data in L1: 229/sec = 2 instructions 

 

 get data in L2: 225/sec = 30  

       instructions  

 

      get data in main memory: 

    222/sec = 250 instructions  

 

         get data from “new            

        place” on disk: 

         27/sec =8,000,000 

      instructions 

   



Morals 

It is much faster to do:   Than: 

  5 million arithmetic ops  1 disk access 

  2500 L2 cache accesses 1 disk access 

  400 main memory accesses 1 disk access 
 

Why are computers built this way? 

– Physical realities (speed of light, closeness to CPU) 

– Cost (price per byte of different technologies) 

– Disks get much bigger not much faster 

• Spinning at 7200 RPM accounts for much of the 

slowness and unlikely to spin faster in the future 

– Speedup at higher levels (e.g. a faster processor) makes 

lower levels relatively slower 

– Later in the course: more than 1 CPU! 
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“Fuggedaboutit”, usually 

The hardware automatically moves data into the caches from main 

memory for you 

– Replacing items already there 

– So algorithms much faster if “data fits in cache” (often does) 

 

Disk accesses are done by software (e.g., ask operating system to 

open a file or database to access some data) 

 

So most code “just runs” but sometimes it’s worth designing 

algorithms / data structures with knowledge of memory hierarchy 

– And when you do, you often need to know one more thing… 
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How does data move up the hierarchy? 

• Moving data up the memory hierarchy is slow because of latency 

(think distance-to-travel) 

– Since we’re making the trip anyway, may as well carpool 

• Get a block of data in the same time it would take to get a byte 

– Sends nearby memory because: 

• It’s easy 

• And likely to be asked for soon (think fields/arrays) 

 

• Side note: Once a value is in cache, may as well keep it around for 

awhile; accessed once, a particular value is more likely to be 

accessed again in the near future (more likely than some random 

other value)  
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Temporal locality 

Spatial Locality 
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Locality 

Temporal Locality (locality in time) – If an address is 
referenced, it will tend to be referenced again soon. 

 

 

 

 

Spatial Locality (locality in space) – If an address is 
referenced, addresses that are close by will tend to 
be referenced soon. 
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Block/line size 

• The amount of data moved from disk into memory is called the 

“block” size or the “page” size 

– Not under program control 

• The amount of data moved from memory into cache is called the 

cache “line” size 

– Not under program control 
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Connection to data structures 

• An array benefits more than a linked list from block moves 

– Language (e.g., Java) implementation can put the list nodes 

anywhere, whereas array is typically contiguous memory 

• Suppose you have a queue to process with 223 items of 27 bytes 

each on disk and the block size is 210 bytes 

– An array implementation needs 220 disk accesses 

• If “perfectly streamed”, > 4 seconds 

• If “random places on disk”, 8000 seconds (> 2 hours) 

– A list implementation in the worst case needs 223  “random” 

disk accesses (>  16 hours) – probably not that bad 

 

• Note: “array” doesn’t necessarily mean “good” 

– Binary heaps “make big jumps” to percolate (different block) 
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BSTs? 

• Looking things up in balanced binary search trees is O(log n), so 

even for n = 239 (512GB) we need not worry about minutes or 

hours 
 

• Still, number of disk accesses matters: 

– Pretend for a minute we had an AVL tree of height 55 

– The total number of nodes could be?_________ 

– Most of the nodes will be on disk: the tree is shallow, but it is 

still many gigabytes big so the entire tree cannot fit in memory 

• Even if memory holds the first 25 nodes on our path, we 

still potentially need 30 disk accesses if we are traversing 

the entire height of the tree. 
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Note about numbers; moral 

• Note: All the numbers in this lecture are “ballpark” “back of the 

envelope” figures 

 

• Moral: Even if they are off by, say, a factor of 5, the moral is the 

same:  

 

 If your data structure is mostly on disk,  

  you want to minimize disk accesses 

 

• A better data structure in this setting would exploit the block size 

and relatively fast memory access to avoid disk accesses… 
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Trees as Dictionaries 

(N= 10 million)    [Example from Weiss] 

In worst case, each node access is a disk access, 

number of accesses: 

      # Disk accesses 

• BST 

 

• AVL 

 

• B Tree 
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Our goal 

 

• Problem: A dictionary with so much data most of it is on disk 

 

• Desire: A balanced tree (logarithmic height) that is even 

shallower than AVL trees so that we can minimize disk 

accesses and exploit disk-block size 

 

• A key idea: Increase the branching factor of our tree 
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