
CSE 332: Data Abstractions 
 

Lecture 6: Dictionaries; Binary Search Trees 

Ruth Anderson 

Autumn 2013 



Announcements 

• Project 1 – phase B due Tues 11pm via catalyst 

• Homework 2 – due Friday at beginning of class 

 

• Project 2 –  

– Coming soon! 

– Can work with a partner 
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Today 

• Dictionaries 

• Trees 
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Where we are 

Studying the absolutely essential ADTs of computer science and 

classic data structures for implementing them 
 

ADTs so far: 
 

1. Stack:       push, pop, isEmpty, … 

2. Queue:       enqueue, dequeue, isEmpty, … 

3. Priority queue: insert, deleteMin, … 
 

Next: 

4. Dictionary (a.k.a. Map): associate keys with values 

– probably the most common, way more than priority queue 
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The Dictionary (a.k.a. Map) ADT 

Data: 

• set of (key, value) pairs 

• keys must be comparable 

 

Operations: 

• insert(key,val):  

- places (key,val) in map  

(If key already used, overwrites 

existing entry) 

• find(key):  

- returns val associated with key 

• delete(key) 

 

– … 

• rea 

Ruth 

 Anderson 

 … 

 

• swansond 

David 

Swanson 

 … 

 

• kainby87 

HyeIn 

Kim 

… 

 

insert ( rea, Ruth Anderson) 

find  ( kainby87) 

HyeIn Kim,… 

We will tend to emphasize the keys, but 

don’t forget about the stored values! 10/07/2013 5 



Comparison: Set ADT vs. Dictionary ADT 

The Set ADT is like a Dictionary without any values 

– A key is present or not (no repeats) 

 

For find, insert, delete, there is little difference 

– In dictionary, values are “just along for the ride” 

– So same data-structure ideas work for dictionaries and sets 

• Java HashSet implemented using a HashMap, for instance 

 

Set ADT may have other important operations 

– union, intersection, is_subset, etc. 

– Notice these are binary operators on sets 

– We will want different data structures to implement these 

operators 
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A Modest Few Uses for Dictionaries 

Any time you want to store information according to some key and 

be able to retrieve it efficiently – a dictionary is the ADT to use! 

– Lots of programs do that! 

 

• Networks:   router tables 

• Operating systems:  page tables 

• Compilers:   symbol tables 

• Databases:   dictionaries with other nice properties 

• Search:  inverted indexes, phone directories, … 

• Biology:  genome maps 

• … 

10/07/2013 7 



Simple implementations 

For dictionary with n key/value pairs 

 

      insert   find    delete 

• Unsorted linked-list 

 

• Unsorted array  

 

• Sorted linked list 

 

• Sorted array 

 

We’ll see a Binary Search Tree (BST) probably does better, but 

not in the worst case unless we keep it balanced 
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Simple implementations 

For dictionary with n key/value pairs 

      insert   find    delete 

• Unsorted linked-list           O(1) *         O(n)            O(n) 

 

• Unsorted array                  O(1)*          O(n)            O(n) 

 

• Sorted linked list                O(n)          O(n)            O(n) 

 

• Sorted array                      O(n)          O(log n)     O(n) 

 

We’ll see a Binary Search Tree (BST) probably does better, but 

not in the worst case unless we keep it balanced 

 *Note: If we do not allow duplicates values to be inserted, we would need to do 

O(n) work to check for a key’s existence before insertion 
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Lazy Deletion (e.g. in a sorted array) 

A general technique for making delete as fast as find: 

– Instead of actually removing the item just mark it deleted 
 

Plusses: 

– Simpler 

– Can do removals later in batches 

– If re-added soon thereafter, just unmark the deletion 
 

Minuses: 

– Extra space for the “is-it-deleted” flag 

– Data structure full of deleted nodes wastes space 

–  find O(log m) time where m is data-structure size (m >= n ) 

– May complicate other operations 
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Better Dictionary data structures 

Will spend the next several lectures looking at  dictionaries with 

three different data structures 
 

1. AVL trees 

– Binary search trees with guaranteed balancing 

2. B-Trees 

– Also always balanced, but different and shallower 

– B!=Binary; B-Trees generally have large branching factor 

3. Hashtables 

– Not tree-like at all 
 

Skipping: Other balanced trees (red-black, splay) 
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Why Trees? 

Trees offer speed ups because of their branching factors 

• Binary Search Trees are structured forms of binary search 
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Binary Search 

3 4 5 7 8 9 10 1 

find(4) 
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Binary Search Tree 

Our goal is the performance of binary search in 

a tree representation 

3 4 5 7 8 9 10 1 
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Why Trees? 

Trees offer speed ups because of their branching factors 

• Binary Search Trees are structured forms of binary search 

 

Even a basic BST is fairly good 

Insert Find Delete 

Worse-Case O(n) O(n) O(n) 

Average-Case O(log n) O(log n) O(log n) 
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Binary Trees 

• Binary tree is empty or 

– a root (with data) 

– a left subtree (maybe empty)  

– a right subtree (maybe empty)  

 

• Representation: 

A 

B 

D E 

C 

F 

H G 

J I 

Data 

right  

pointer 

left 

pointer 

• For a dictionary, data will include a 
key and a value 
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Binary Tree: Some Numbers 

Recall: height of a tree = longest path from root to leaf (count # of edges) 

 

For binary tree of height h: 

– max # of leaves:  

 

– max # of nodes: 

 

– min # of leaves: 

 

– min # of nodes: 
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Binary Trees: Some Numbers 

Recall: height of a tree = longest path from root to leaf (count edges) 

 

For binary tree of height h: 

– max # of leaves:  

 

– max # of nodes: 

 

– min # of leaves: 

 

– min # of nodes: 

 

2h 

2(h + 1) - 1 

1 

h + 1 

For n nodes, we cannot do better than O(log n) height,  

and we want to avoid O(n) height 

10/07/2013 18 



Calculating height 

What is the height of a tree with root  root? 
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int treeHeight(Node root) { 

 

   ??? 

 

 

} 



Calculating height 

What is the height of a tree with root  r? 
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int treeHeight(Node root) { 

  if(root == null) 

    return -1; 

  return 1 + max(treeHeight(root.left), 

                 treeHeight(root.right)); 

} 

Running time for tree with n nodes: O(n) – single pass over tree 
 

Note: non-recursive is painful – need your own stack of pending 

nodes; much easier to use recursion’s call stack 



Tree Traversals 

A traversal is an order for visiting all the nodes of a tree 

 

• Pre-order: root, left subtree, right subtree 

 
 

• In-order: left subtree, root, right subtree 

 
 

• Post-order: left subtree, right subtree, root 

+ 

* 

2 4 

5 

(an expression tree) 
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Tree Traversals 

A traversal is an order for visiting all the nodes of a tree 

 

• Pre-order: root, left subtree, right subtree 

 + * 2 4 5 
 

• In-order: left subtree, root, right subtree 

 2 * 4 + 5 
 

• Post-order: left subtree, right subtree, root 

 2 4 * 5 + 

+ 

* 

2 4 

5 

(an expression tree) 
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More on  traversals 

void inOrdertraversal(Node t){ 

  if(t != null) { 

    traverse(t.left); 

    process(t.element); 

    traverse(t.right); 

  } 

} 

Sometimes order doesn’t matter 

• Example: sum all elements 

Sometimes order matters 

• Example: print tree with parent above  

 indented children (pre-order) 

• Example: evaluate an expression tree 

(post-order) 

A 

    B 

        D 

        E 

    C 

    F 

        G 

          

A 

B 

D E 

C 

F G 
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Binary Search Tree 

4 

12 10 6 2 

11 5 

8 

14 

13 

7 9 

• Structural property (“binary”) 

– each node has  2 children 

– result: keeps operations simple 

 

• Order property 

– all keys in left subtree smaller 

than node’s key 

– all keys in right subtree larger 

than node’s key 

– result: easy to find any given key 
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Are these BSTs? 

3 

11 7 1 

8 4 

5 

4 

18 10 6 2 

11 5 

8 

20 

21 

7 

15 
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Are these BSTs? 

3 

11 7 1 

8 4 

5 

4 

18 10 6 2 

11 5 

8 

20 

21 

7 

15 
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Find in BST, Recursive 

20 9 2 

15 5 

12 

30 7 17 10 

Data find(Key key, Node root){ 

 if(root == null) 

   return null; 

 if(key < root.key) 

   return find(key,root.left); 

 if(key > root.key) 

   return find(key,root.right); 

 return root.data; 

} 
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Find in BST, Iterative 

20 9 2 

15 5 

12 

30 7 17 10 

Data find(Key key, Node root){ 

 while(root != null  

       && root.key != key) { 

  if(key < root.key) 

    root = root.left; 

  else(key > root.key) 

    root = root.right; 

 } 

 if(root == null) 

    return null; 

 return root.data; 

} 
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Other “finding operations” 

 

• Find minimum node 

 

• Find maximum node 

 

 

• Find predecessor of a non-leaf 

• Find successor of a non-leaf 

• Find predecessor of a leaf 

• Find successor of a leaf 

 

 

20 9 2 

15 5 

12 

30 7 17 10 
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Insert in BST 

20 9 2 

15 5 

12 

30 7 17 

insert(13) 

insert(8) 

insert(31) 

(New) insertions happen 

only at leaves – easy! 

 

1. Find 

2. Create a new node 

10 
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Deletion in BST 

20 9 2 

15 5 

12 

30 7 17 

Why might deletion be harder than insertion? 

10 
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Deletion 

• Removing an item disrupts the tree structure 

 

• Basic idea:  

– find the node to be removed,  

– Remove it 

– “fix” the tree so that it is still a binary search tree 

 

• Three cases: 

– node has no children (leaf) 

– node has one child 

– node has two children 
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Deletion – The Leaf Case 

20 9 2 

15 5 

12 

30 7 17 

delete(17) 

10 
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Deletion – The One Child Case 

20 9 2 

15 5 

12 

30 7 10 
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delete(15) 



Deletion – The Two Child Case 

30 9 2 

20 5 

12 

7 

What can we replace 5 with? 

 

 

10 
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delete(5) 



Deletion – The Two Child Case 

Idea: Replace the deleted node with a value guaranteed to be 

between the two child subtrees 

 

Options: 

• successor    from right subtree: findMin(node.right) 

• predecessor   from left subtree:   findMax(node.left) 

– These are the easy cases of predecessor/successor 

 

Now delete the original node containing successor or predecessor 

• Leaf or one child case – easy cases of delete! 
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Delete Using Successor  

30 9 2 

20 5 

12 

7 10 

delete(5) 

findMin(right sub tree)  7 

30 9 2 

20 7 

12 

10 
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Delete Using Predecessor 

30 9 2 

20 5 

12 

7 10 

delete(5) 

findMax(left sub tree)  2 

30 9 

20 2 

12 

7 10 
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BuildTree for BST 

• We had buildHeap, so let’s consider buildTree 

 

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST 

 

– If inserted in given order,  

what is the tree?   

 

– What big-O runtime for  

this kind of sorted input? 

 

– Is inserting in the reverse order  

 any better? 

 

 

1 

2 

3 
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BuildTree for BST 

• We had buildHeap, so let’s consider buildTree 

 

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST 

 

– If inserted in given order,  

what is the tree?   

 

– What big-O runtime for  

this kind of sorted input? 

 

– Is inserting in the reverse order  

 any better? 

 

 

1 

2 

3 

O(n2) 

Not a happy place 

10/07/2013 40 



BuildTree for BST 

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST 
 

• What we if could somehow re-arrange them 

– median first, then left median, right median, etc. 

– 5, 3, 7, 2, 1, 4, 8, 6, 9  

 

– What tree does that give us?  

 

– What big-O runtime? 

 

 8 4 2 

7 3 

5 

9 

6 

1 
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BuildTree for BST 

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST 
 

• What we if could somehow re-arrange them 

– median first, then left median, right median, etc. 

– 5, 3, 7, 2, 1, 4, 8, 6, 9  

 

– What tree does that give us?  

 

– What big-O runtime? 

 

 8 4 2 

7 3 

5 

9 

6 

1 

O(n log n), definitely better 
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Give up on BuildTree for BST 

The median trick will guarantee a O(n log n) 

build time, but it is not worth the effort. 

 

Why? 

• Subsequent inserts and deletes will 

eventually transform the carefully 

balanced tree into the dreaded list 

• Then everything will have the O(n) 

performance of a linked list 
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Balanced BST 

Observation 

• BST: the shallower the better! 

• For a BST with n nodes inserted in arbitrary order 

– Average height is O(log n) – see text for proof 

– Worst case height is O(n) 

• Simple cases such as inserting in key order lead to 

 the worst-case scenario 

 

Solution: Require a Balance Condition that 

1. ensures depth is always O(log n)     – strong enough! 

2. is easy to maintain                  – not too strong! 
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Potential Balance Conditions 

1. Left and right subtrees of the root 

have equal number of nodes 

 

 

 

2. Left and right subtrees of the root 

have equal height 
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Potential Balance Conditions 

1. Left and right subtrees of the root 

have equal number of nodes 

 

 

 

2. Left and right subtrees of the root 

have equal height 

Too weak! 

Height mismatch example: 

Too weak! 

Double chain example: 
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Potential Balance Conditions 

3. Left and right subtrees of every node 

have equal number of nodes 

 

 

 

4. Left and right subtrees of every node 

have equal height 

10/07/2013 47 



Potential Balance Conditions 

3. Left and right subtrees of every node 

have equal number of nodes 

 

 

 

4. Left and right subtrees of every node 

have equal height 

Too strong! 

Only perfect trees (2n – 1 nodes) 

Too strong! 

Only perfect trees (2n – 1 nodes) 
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49 

The AVL Balance Condition 

Left and right subtrees of every node 

have heights differing by at most 1 

 

Definition:  balance(node) = height(node.left) – height(node.right) 

 

AVL property:   for every node x,   –1  balance(x)  1    

 

• Ensures small depth 

– Will prove this by showing that an AVL tree of height 

h must have a number of nodes exponential in h 

 

• Easy (well, efficient) to maintain 

– Using single and double rotations 
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