
CSE 332: Data Abstractions

Lecture 6: Dictionaries; Binary Search Trees

Ruth Anderson

Autumn 2013

Announcements

• Project 1 – phase B due Tues 11pm via catalyst

• Homework 2 – due Friday at beginning of class

• Project 2 –

– Coming soon!

– Can work with a partner

10/07/2013 2

Today

• Dictionaries

• Trees

10/07/2013 3

Where we are

Studying the absolutely essential ADTs of computer science and

classic data structures for implementing them

ADTs so far:

1. Stack: push, pop, isEmpty, …

2. Queue: enqueue, dequeue, isEmpty, …

3. Priority queue: insert, deleteMin, …

Next:

4. Dictionary (a.k.a. Map): associate keys with values

– probably the most common, way more than priority queue

10/07/2013 4

The Dictionary (a.k.a. Map) ADT

Data:

• set of (key, value) pairs

• keys must be comparable

Operations:

• insert(key,val):

- places (key,val) in map

(If key already used, overwrites

existing entry)

• find(key):

- returns val associated with key

• delete(key)

– …

• rea

Ruth

 Anderson

 …

• swansond

David

Swanson

 …

• kainby87

HyeIn

Kim

…

insert (rea, Ruth Anderson)

find (kainby87)

HyeIn Kim,…

We will tend to emphasize the keys, but

don’t forget about the stored values! 10/07/2013 5

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values

– A key is present or not (no repeats)

For find, insert, delete, there is little difference

– In dictionary, values are “just along for the ride”

– So same data-structure ideas work for dictionaries and sets

• Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

– union, intersection, is_subset, etc.

– Notice these are binary operators on sets

– We will want different data structures to implement these

operators

10/07/2013 6

A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and

be able to retrieve it efficiently – a dictionary is the ADT to use!

– Lots of programs do that!

• Networks: router tables

• Operating systems: page tables

• Compilers: symbol tables

• Databases: dictionaries with other nice properties

• Search: inverted indexes, phone directories, …

• Biology: genome maps

• …

10/07/2013 7

Simple implementations

For dictionary with n key/value pairs

 insert find delete

• Unsorted linked-list

• Unsorted array

• Sorted linked list

• Sorted array

We’ll see a Binary Search Tree (BST) probably does better, but

not in the worst case unless we keep it balanced

10/07/2013 8

Simple implementations

For dictionary with n key/value pairs

 insert find delete

• Unsorted linked-list O(1) * O(n) O(n)

• Unsorted array O(1)* O(n) O(n)

• Sorted linked list O(n) O(n) O(n)

• Sorted array O(n) O(log n) O(n)

We’ll see a Binary Search Tree (BST) probably does better, but

not in the worst case unless we keep it balanced

 *Note: If we do not allow duplicates values to be inserted, we would need to do

O(n) work to check for a key’s existence before insertion

10/07/2013 9

Lazy Deletion (e.g. in a sorted array)

A general technique for making delete as fast as find:

– Instead of actually removing the item just mark it deleted

Plusses:

– Simpler

– Can do removals later in batches

– If re-added soon thereafter, just unmark the deletion

Minuses:

– Extra space for the “is-it-deleted” flag

– Data structure full of deleted nodes wastes space

– find O(log m) time where m is data-structure size (m >= n)

– May complicate other operations

10/07/2013 10

10 12 24 30 41 42 44 45 50

Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with

three different data structures

1. AVL trees

– Binary search trees with guaranteed balancing

2. B-Trees

– Also always balanced, but different and shallower

– B!=Binary; B-Trees generally have large branching factor

3. Hashtables

– Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

10/07/2013 11

Why Trees?

Trees offer speed ups because of their branching factors

• Binary Search Trees are structured forms of binary search

10/07/2013 12

Binary Search

3 4 5 7 8 9 10 1

find(4)

10/07/2013 13

Binary Search Tree

Our goal is the performance of binary search in

a tree representation

3 4 5 7 8 9 10 1

10/07/2013 14

Why Trees?

Trees offer speed ups because of their branching factors

• Binary Search Trees are structured forms of binary search

Even a basic BST is fairly good

Insert Find Delete

Worse-Case O(n) O(n) O(n)

Average-Case O(log n) O(log n) O(log n)

10/07/2013 15

Binary Trees

• Binary tree is empty or

– a root (with data)

– a left subtree (maybe empty)

– a right subtree (maybe empty)

• Representation:

A

B

D E

C

F

H G

J I

Data

right

pointer

left

pointer

• For a dictionary, data will include a
key and a value

10/07/2013 16

Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count # of edges)

For binary tree of height h:

– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

10/07/2013 17

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

2h

2(h + 1) - 1

1

h + 1

For n nodes, we cannot do better than O(log n) height,

and we want to avoid O(n) height

10/07/2013 18

Calculating height

What is the height of a tree with root root?

10/07/2013 19

int treeHeight(Node root) {

 ???

}

Calculating height

What is the height of a tree with root r?

10/07/2013 20

int treeHeight(Node root) {

 if(root == null)

 return -1;

 return 1 + max(treeHeight(root.left),

 treeHeight(root.right));

}

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending

nodes; much easier to use recursion’s call stack

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

10/07/2013 21

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

 + * 2 4 5

• In-order: left subtree, root, right subtree

 2 * 4 + 5

• Post-order: left subtree, right subtree, root

 2 4 * 5 +

+

*

2 4

5

(an expression tree)

10/07/2013 22

More on traversals

void inOrdertraversal(Node t){

 if(t != null) {

 traverse(t.left);

 process(t.element);

 traverse(t.right);

 }

}

Sometimes order doesn’t matter

• Example: sum all elements

Sometimes order matters

• Example: print tree with parent above

 indented children (pre-order)

• Example: evaluate an expression tree

(post-order)

A

 B

 D

 E

 C

 F

 G

A

B

D E

C

F G

10/07/2013 23

Binary Search Tree

4

12 10 6 2

11 5

8

14

13

7 9

• Structural property (“binary”)

– each node has 2 children

– result: keeps operations simple

• Order property

– all keys in left subtree smaller

than node’s key

– all keys in right subtree larger

than node’s key

– result: easy to find any given key

10/07/2013 24

Are these BSTs?

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21

7

15

10/07/2013 25

Are these BSTs?

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21

7

15

10/07/2013 26

Yes No

Find in BST, Recursive

20 9 2

15 5

12

30 7 17 10

Data find(Key key, Node root){

 if(root == null)

 return null;

 if(key < root.key)

 return find(key,root.left);

 if(key > root.key)

 return find(key,root.right);

 return root.data;

}

10/07/2013 27

Find in BST, Iterative

20 9 2

15 5

12

30 7 17 10

Data find(Key key, Node root){

 while(root != null

 && root.key != key) {

 if(key < root.key)

 root = root.left;

 else(key > root.key)

 root = root.right;

 }

 if(root == null)

 return null;

 return root.data;

}

10/07/2013 28

Other “finding operations”

• Find minimum node

• Find maximum node

• Find predecessor of a non-leaf

• Find successor of a non-leaf

• Find predecessor of a leaf

• Find successor of a leaf

20 9 2

15 5

12

30 7 17 10

10/07/2013 29

Insert in BST

20 9 2

15 5

12

30 7 17

insert(13)

insert(8)

insert(31)

(New) insertions happen

only at leaves – easy!

1. Find

2. Create a new node

10

10/07/2013 30

Deletion in BST

20 9 2

15 5

12

30 7 17

Why might deletion be harder than insertion?

10

10/07/2013 31

Deletion

• Removing an item disrupts the tree structure

• Basic idea:

– find the node to be removed,

– Remove it

– “fix” the tree so that it is still a binary search tree

• Three cases:

– node has no children (leaf)

– node has one child

– node has two children

10/07/2013 32

Deletion – The Leaf Case

20 9 2

15 5

12

30 7 17

delete(17)

10

10/07/2013 33

Deletion – The One Child Case

20 9 2

15 5

12

30 7 10

10/07/2013 34

delete(15)

Deletion – The Two Child Case

30 9 2

20 5

12

7

What can we replace 5 with?

10

10/07/2013 35

delete(5)

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be

between the two child subtrees

Options:

• successor from right subtree: findMin(node.right)

• predecessor from left subtree: findMax(node.left)

– These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

• Leaf or one child case – easy cases of delete!

10/07/2013 36

Delete Using Successor

30 9 2

20 5

12

7 10

delete(5)

findMin(right sub tree) 7

30 9 2

20 7

12

10

10/07/2013 37

Delete Using Predecessor

30 9 2

20 5

12

7 10

delete(5)

findMax(left sub tree) 2

30 9

20 2

12

7 10

10/07/2013 38

BuildTree for BST

• We had buildHeap, so let’s consider buildTree

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

– If inserted in given order,

what is the tree?

– What big-O runtime for

this kind of sorted input?

– Is inserting in the reverse order

 any better?

1

2

3

10/07/2013 39

BuildTree for BST

• We had buildHeap, so let’s consider buildTree

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

– If inserted in given order,

what is the tree?

– What big-O runtime for

this kind of sorted input?

– Is inserting in the reverse order

 any better?

1

2

3

O(n2)

Not a happy place

10/07/2013 40

BuildTree for BST

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

• What we if could somehow re-arrange them

– median first, then left median, right median, etc.

– 5, 3, 7, 2, 1, 4, 8, 6, 9

– What tree does that give us?

– What big-O runtime?

 8 4 2

7 3

5

9

6

1

10/07/2013 41

BuildTree for BST

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

• What we if could somehow re-arrange them

– median first, then left median, right median, etc.

– 5, 3, 7, 2, 1, 4, 8, 6, 9

– What tree does that give us?

– What big-O runtime?

 8 4 2

7 3

5

9

6

1

O(n log n), definitely better

10/07/2013 42

Give up on BuildTree for BST

The median trick will guarantee a O(n log n)

build time, but it is not worth the effort.

Why?

• Subsequent inserts and deletes will

eventually transform the carefully

balanced tree into the dreaded list

• Then everything will have the O(n)

performance of a linked list

10/07/2013 43

Balanced BST

Observation

• BST: the shallower the better!

• For a BST with n nodes inserted in arbitrary order

– Average height is O(log n) – see text for proof

– Worst case height is O(n)

• Simple cases such as inserting in key order lead to

 the worst-case scenario

Solution: Require a Balance Condition that

1. ensures depth is always O(log n) – strong enough!

2. is easy to maintain – not too strong!

10/07/2013 44

Potential Balance Conditions

1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root

have equal height

10/07/2013 45

Potential Balance Conditions

1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root

have equal height

Too weak!

Height mismatch example:

Too weak!

Double chain example:

10/07/2013 46

Potential Balance Conditions

3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node

have equal height

10/07/2013 47

Potential Balance Conditions

3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node

have equal height

Too strong!

Only perfect trees (2n – 1 nodes)

Too strong!

Only perfect trees (2n – 1 nodes)

10/07/2013 48

49

The AVL Balance Condition

Left and right subtrees of every node

have heights differing by at most 1

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1 balance(x) 1

• Ensures small depth

– Will prove this by showing that an AVL tree of height

h must have a number of nodes exponential in h

• Easy (well, efficient) to maintain

– Using single and double rotations

10/07/2013

