CSE332: Data Abstractions

Lecture 2: Math Review; Algorithm Analysis

Ruth Anderson

Autumn 2013
Announcements

• Project 1 – phase A due next Wed

• Homework 1 - due next Friday
Today

- Finish discussing queues
- Review math essential to algorithm analysis
 - Proof by induction
 - Bit patterns
 - Powers of 2
 - Exponents and logarithms

- Begin analyzing algorithms
 - Using asymptotic analysis (continue next time)
Mathematical induction

Suppose $P(n)$ is some predicate (involving integer n)

- Example: $n \geq n/2 + 1$ (for all $n \geq 2$)

To prove $P(n)$ for all integers $n \geq c$, it suffices to prove

1. $P(c)$ – called the “basis” or “base case”
2. If $P(k)$ then $P(k+1)$ – called the “induction step” or “inductive case”

We will use induction:

To show an algorithm is correct or has a certain running time

no matter how big a data structure or input value is

(Our “n” will be the data structure or input size.)
Inductive Proof Example

Theorem: \(P(n) \) holds for all \(n \geq 1 \)

Proof: By induction on \(n \)

- Base case, \(n=1 \): Sum of first power of 2 is \(2^0 \), which equals 1. And for \(n=1 \), \(2^n-1 \) equals 1.

- Inductive case:
 - Inductive hypothesis: Assume the sum of the first \(k \) powers of 2 is \(2^k-1 \)
 - Show, given the hypothesis, that the sum of the first \((k+1)\) powers of 2 is \(2^{k+1}-1 \)

From our inductive hypothesis we know:

\[
1 + 2 + 4 + \ldots + 2^{k-1} = 2^k - 1
\]

Add the next power of 2 to both sides…

\[
1 + 2 + 4 + \ldots + 2^{k-1} + 2^k = 2^k - 1 + 2^k
\]

We have what we want on the left; massage the right a bit

\[
1 + 2 + 4 + \ldots + 2^{k-1} + 2^k = 2(2^k) - 1 = 2^{k+1} - 1
\]
Note for homework

Proofs by induction will come up a fair amount on the homework.

When doing them, be sure to state each part clearly:

- What you’re trying to prove
- The base case
- The inductive case
- The inductive hypothesis
 - In many inductive proofs, you’ll prove the inductive case by just starting with your inductive hypothesis, and playing with it a bit, as shown above.
N bits can represent how many things?

<table>
<thead>
<tr>
<th># Bits</th>
<th>Patterns</th>
<th># of patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Powers of 2

- A bit is 0 or 1
- A sequence of \(n \) bits can represent \(2^n \) distinct things
 - For example, the numbers 0 through \(2^n - 1 \)
- \(2^{10} \) is 1024 ("about a thousand", kilo in CSE speak)
- \(2^{20} \) is "about a million", mega in CSE speak
- \(2^{30} \) is "about a billion", giga in CSE speak

Java: an `int` is 32 bits and signed, so “max int” is “about 2 billion”
 - an `long` is 64 bits and signed, so “max long” is \(2^{63} - 1 \)
Therefore…

Could give a unique id to…

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?
Logarithms and Exponents

- Since so much is binary in CS, \log almost always means \log_2
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, $\log_2 1,000,000 = \text{“a little under 20”}$
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!
Logarithms and Exponents

![Graph showing exponential growth for different functions: 2^n, n^2, n, and $\log n$. The x-axis represents values of 'n' from 1 to 5, and the y-axis represents the values of the respective functions. Each function is represented by a different line with corresponding markers.](image)
Logarithms and Exponents
Logarithms and Exponents
Properties of logarithms

• \(\log(A\times B) = \log A + \log B \)
 – So \(\log(N^k) = k \log N \)

• \(\log(A/B) = \log A - \log B \)

• \(x = \log_2 2^x \)

• \(\log(\log x) \) is written \(\log_2 \log x \)
 – Grows as slowly as \(2^y \) grows fast
 – Ex:
 \[
 \log_2 \log_2 4\text{billion} \sim \log_2 \log_2 2^{32} = \log_2 32 = 5
 \]

• \((\log x)(\log x) \) is written \(\log^2 x \)
 – It is greater than \(\log x \) for all \(x > 2 \)
Log base doesn’t matter (much)

“Any base B log is equivalent to base 2 log within a constant factor”
 – And we are about to stop worrying about constant factors!
 – In particular, $\log_2 x = 3.22 \log_{10} x$
 – In general, we can convert log bases via a constant multiplier
 – Say, to convert from base A to base B:

 $$\log_B x = \left(\log_A x \right) / \left(\log_A B \right)$$
Algorithm Analysis

As the “size” of an algorithm’s input grows (integer, length of array, size of queue, etc.):
 – How much longer does the algorithm take (time)
 – How much more memory does the algorithm need (space)

Because the curves we saw are so different, we often only care about “which curve we are like”

Separate issue: Algorithm *correctness* – does it produce the right answer for all inputs
 – Usually more important, naturally
Example

• What does this pseudocode return?

```plaintext
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
    return x;
```

• Correctness: For any $N \geq 0$, it returns…
Example

- What does this pseudocode return?
  ```plaintext
  x := 0;
  for i=1 to N do
    for j=1 to i do
      x := x + 3;
  return x;
  ```

- Correctness: For any N ≥ 0, it returns 3N(N+1)/2

- Proof: By induction on n
 - $P(n)$ = after outer for-loop executes n times, x holds $3n(n+1)/2$
 - Base: $n=0$, returns 0
 - Inductive: From $P(k)$, x holds $3k(k+1)/2$ after k iterations. Next iteration adds $3(k+1)$, for total of $3k(k+1)/2 + 3(k+1) = (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2$
Example

• How long does this pseudocode run?

  ```pseudocode
  x := 0;
  for i=1 to N do
      for j=1 to i do
          x := x + 3;
  return x;
  ```

• Running time: For any \(N \geq 0 \),

 – Assignments, additions, returns take “1 unit time”
 – Loops take the sum of the time for their iterations

• So: \(2 + 2^*(\text{number of times inner loop runs}) \)

 – And how many times is that?
Example

• How long does this pseudocode run?
 \[
 x := 0; \\
 \text{for } i=1 \text{ to } N \text{ do} \\
 \quad \text{for } j=1 \text{ to } i \text{ do} \\
 \quad \quad x := x + 3; \\
 \text{return } x;
 \]

• How many times does the \textit{inner loop} run?
Example

• How long does this pseudocode run?

  ```c
  x := 0;
  for i=1 to N do
    for j=1 to i do
      x := x + 3;
  return x;
  ```

• The total number of loop iterations is N*(N+1)/2
 – This is a very common loop structure, worth memorizing
 – This is *proportional to* N^2, and we say O(N^2), “big-Oh of”
 • For large enough N, the N and constant terms are irrelevant, as are the first assignment and return
 • See plot… N*(N+1)/2 vs. just N^2/2
Lower-order terms don’t matter

$N^*(N+1)/2$ vs. just $N^2/2$
Geometric interpretation

\[
\sum_{i=1}^{N} i = N*N/2 + N/2
\]

for \(i=1\) to \(N\) do
 for \(j=1\) to \(i\) do
 // small work

- Area of square: \(N*N\)
- Area of lower triangle of square: \(N*N/2\)
- Extra area from squares crossing the diagonal: \(N*1/2\)
- As \(N\) grows, fraction of “extra area” compared to lower triangle goes to zero (becomes insignificant)
Recurrence Equations

• For running time, what the loops did was irrelevant, it was how many times they executed.

• Running time as a function of input size n (here loop bound):
 \[T(n) = n + T(n-1) \]
 (and $T(0) = 2$ish, but usually implicit that $T(0)$ is some constant)

• Any algorithm with running time described by this formula is $O(n^2)$

• “Big-Oh” notation also ignores the constant factor on the high-order term, so $3N^2$ and $17N^2$ and $(1/1000)N^2$ are all $O(N^2)$

 – As N grows large enough, no smaller term matters

 – Next time: Many more examples + formal definitions
Big-O: Common Names

\[O(1) \] constant (same as \(O(k) \) for constant \(k \))
\[O(\log n) \] logarithmic
\[O(n) \] linear
\[O(n \log n) \] “\(n \log n \)”
\[O(n^2) \] quadratic
\[O(n^3) \] cubic
\[O(n^k) \] polynomial (where \(k \) is any constant > 1)
\[O(k^n) \] exponential (where \(k \) is any constant > 1)

“exponential” does not mean “grows really fast”, it means “grows at rate proportional to \(k^n \) for some \(k>1 \)”