
P, NP, NP-Complete

Ruth Anderson

2

Today’s Agenda

• A Few Problems:

– Euler Circuits

– Hamiltonian Circuits

• Intractability: P and NP

• NP-Complete

• What now?

3

Try it!

Which of these can you draw (trace all edges)

without lifting your pencil, drawing each line

only once?

Can you start and end at the same point?

Your First Task

• Your company has to inspect a set of roads

between cities by driving over each of them.

• Driving over the roads costs money (fuel), and

there are a lot of roads.

• Your boss wants you to figure out how to drive

over each road exactly once, returning to your

starting point.

4

5

Euler Circuits

• Euler circuit: a path through a graph that visits each
edge exactly once and starts and ends at the same
vertex

• Named after Leonhard Euler (1707-1783), who cracked
this problem and founded graph theory in 1736

• An Euler circuit exists iff
– the graph is connected and

– each vertex has even degree (= # of edges on the vertex)

6

The Road Inspector: Finding Euler Circuits

Given a graph G = (V,E), find an Euler circuit in G

Can check if one exists:

• Check if all vertices have even degree

Basic Euler Circuit Algorithm:

1. Do a depth first search from a start vertex

until you are back to the start vertex.

– You never get stuck because of the even

degree property.

2. “Remove” the walk, leaving several

components each with the even degree

property.

– Recursively find Euler circuits for these.

3. Splice all these circuits into an Euler circuit

 Running time?

7

The Road Inspector: Finding Euler Circuits

Given a graph G = (V,E), find an Euler circuit in G

Can check if one exists: (in O(|V|+|E|))

• Check if all vertices have even degree

Basic Euler Circuit Algorithm:

1. Do a depth first search from a start vertex

until you are back to the start vertex.

– You never get stuck because of the even

degree property.

2. “Remove” the walk, leaving several

components each with the even degree

property.

– Recursively find Euler circuits for these.

3. Splice all these circuits into an Euler circuit

 Running time? O(|V|+|E|)

8

Euler Circuit Example

A

B C

D E

F

G

Euler(A) :

9

Euler Circuit Example

A

B C

D E

F

G

Euler(A) :

A B G E D G C A

10

Euler Circuit Example

A

B C

D E

F

G

Euler(A) :

A B G E D G C A

B C

D E

F

Euler(B)

11

Euler Circuit Example

A

B C

D E

F

G

Euler(A) :

A B G E D G C A

B C

D E

F

Euler(B):

B D F E C B

12

Euler Circuit Example

A

B C

D E

F

G

Euler(A) :

A B G E D G C A

B C

D E

F

Euler(B):

B D F E C B

 Splice

A B D F E C B G E D G C A

Your Second Task

• Your boss is pleased…and assigns you a new

task.

• Your company has to send someone by car to a

set of cities.

• The primary cost is the exorbitant toll going into

each city.

• Your boss wants you to figure out how to drive to

each city exactly once, returning in the end to

the city of origin.

13

14

Hamiltonian Circuits

• Euler circuit: A cycle that goes
through each edge exactly once

• Hamiltonian circuit: A cycle that
goes through each vertex
exactly once

• Does graph I have:

– An Euler circuit?

– A Hamiltonian circuit?

• Does graph II have:

– An Euler circuit?

– A Hamiltonian circuit?

B C

D E

G

B C

D E

G I

II

15

Finding Hamiltonian Circuits

• Problem: Find a Hamiltonian circuit in a graph G

• One solution: Search through all paths to find one that
visits each vertex exactly once

– Can use your favorite graph search algorithm to find paths

• This is an exhaustive search (“brute force”) algorithm

• Worst case: need to search all paths

– How many paths??

16

Analysis of Exhaustive Search Algorithm

Worst case: need to search all paths

– How many paths?

Can depict these paths as a

search tree:

B C

D E

G

B

D G C

G E D E C G E

Etc.

Search tree of paths from B

17

• Let the average branching factor of
each node in this tree be b

• |V| vertices, each with b branches

• Total number of paths b·b·b … ·b

• Worst case

B

D G C

G E D E C G E

Etc.

Search tree of paths from B

Analysis of Exhaustive Search Algorithm

18

• Let the average branching factor of
each node in this tree be b

• |V| vertices, each with b branches

• Total number of paths b·b·b … ·b

= O(b|V|)

• Worst case Exponential time!

B

D G C

G E D E C G E

Etc.

Search tree of paths from B

Analysis of Exhaustive Search Algorithm

Running Times

19

20

Time needed to solve problems of various sizes with an algorithm using the indicated

number n of bit operations, assuming that each bit operation takes 10−11 seconds, a

reasonable estimate of the time required for a bit operation using the fastest computers

available today. Times of more than 10100 years are indicated with an asterisk. In the

future, these times will decrease as faster computers are developed.

From Rosen, Discrete Mathematics and Its Applications, 2012

21

Polynomial vs. Exponential Time

• All of the algorithms we have discussed in
this class have been polynomial time
algorithms:

• Examples: O(log N), O(N), O(N log N), O(N2)

• Algorithms whose running time is O(Nk) for
some k > 0

• Exponential time bN is asymptotically
worse than any polynomial function Nk for
any k

22

The Complexity Class P

• P is the set of all problems that can be

solved in polynomial time

– All problems that have some algorithm

whose running time is O(Nk) for some k

• Examples of problems in P:

sorting, shortest path, Euler circuit, etc.

23

P

Sorting

Shortest Path

Euler Circuit

24

P

Sorting

Shortest Path

Euler Circuit

Hamiltonian Circuit

25

P

Sorting

Shortest Path

Euler Circuit

Hamiltonian Circuit

Satisfiability (SAT)

Vertex Cover

Travelling Salesman

Satisfiability

Input: a logic formula of size m containing n variables

Output: An assignment of Boolean values to the

variables in the formula such that the formula is true

O(m*2n) algorithm: Try every variable assignment

26

Vertex Cover:

Input: A graph (V,E) and a number m

Output: A subset S of V such that for every edge (u,v) in E, at least

one of u or v is in S and |S|=m (if such an S exists)

O(2m) algorithm: Try every subset of vertices of size m

27

Traveling Salesman

Input: A complete weighted graph (V,E) and a number m

Output: A circuit that visits each vertex exactly once and has

total cost < m if one exists

O(|V|!) algorithm: Try every path, stop if find cheap enough one

28

A Glimmer of Hope

• If given a candidate solution to a problem,

we can check if that solution is correct

in polynomial-time, then maybe a

polynomial-time solution exists?

• Can we do this with Hamiltonian Circuit?

– Given a candidate path, is it a Hamiltonian

Circuit?

29

A Glimmer of Hope

• If given a candidate solution to a problem,

we can check if that solution is correct

in polynomial-time, then maybe a

polynomial-time solution exists?

• Can we do this with Hamiltonian Circuit?

– Given a candidate path, is it a Hamiltonian

Circuit? just check if all vertices are visited

exactly once in the candidate path
30

31

The Complexity Class NP

• Definition: NP is the set of all problems

for which a given candidate solution can

be tested in polynomial time

• Examples of problems in NP:
– Hamiltonian circuit: Given a candidate path, can test in

linear time if it is a Hamiltonian circuit

– Satisfiability: Given a circuit made out of AND, OR, NOT
gates, and an assignment of values, is the output “1”?

– All problems that are in P (why?)

32

P

Sorting

Shortest Path

Euler Circuit

Hamiltonian Circuit

Satisfiability (SAT)

Vertex Cover

Travelling Salesman

NP

33

Why do we call it “NP”?

• NP stands for Nondeterministic Polynomial time

– Why “nondeterministic”? Corresponds to algorithms that
can guess a solution (if it exists), the solution is then
verified to be correct in polynomial time

– Can also think of as allowing a special operation that
allows the algorithm to magically guess the right choice at
each branch point.

– Nondeterministic algorithms don’t exist – purely theoretical
idea invented to understand how hard a problem could be

34

Your Chance to Win a Turing Award!

It is generally believed that P NP,

 i.e. there are problems in NP that are not in P

– But no one has been able to show even one

such problem!

– This is the fundamental open problem in
theoretical computer science

– Nearly everyone has given up trying to prove it.
Instead, theoreticians prove theorems about
what follows once we assume P NP !

NP-completeness

• Set of problems in NP that (we are pretty sure)

cannot be solved in polynomial time.

• These are thought of as the hardest problems in

the class NP.

• Interesting fact: If any one NP-complete

problem could be solved in polynomial time,

then all NP-complete problems could be solved

in polynomial time.

• Even more: If any NP-complete problem is in P, then

all of NP is in P

35

36

P

Sorting

Shortest Path

Euler Circuit

Hamiltonian Circuit

Satisfiability (SAT)

Vertex Cover

Travelling Salesman

NP

NP-Complete

Saving Your Job

• Try as you might, every solution you come

up with for the Hamiltonian Circuit problem

runs in exponential time…..

• You have to report back to your boss.

• Your options:

– Keep working

– Come up with an alternative plan…

37

In general, what to do with a

Hard Problem
• Your problem seems really hard.

• If you can transform an NP-complete

problem into the one you’re trying to solve,

then you can stop working on your

problem!

38

39

What do we do about it?

• Approximation Algorithm:

– Can we get an efficient algorithm that guarantees

something close to optimal?

• Heuristics:

– Can we get something that seems to work well most

of the time?

• Restrictions:

– Maybe you have stated your problem too generally.

Many hard problems are easy for restricted inputs.

40

Great Quick Reference
• Computers and Intractability: A Guide to

the Theory of NP-Completeness, by

Michael S. Garey and David S. Johnson

