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Pick From These 3 Choices for Memory: 

For every memory location in your program (e.g., object field),  

you must obey at least one of the following: 

1. Thread-local: Do not use the location in > 1 thread 

2. Immutable: Do not write to the memory location 

3. Synchronized: Use synchronization to control access 

all memory thread-local 

memory 
immutable 

memory 

need  

synchronization 



Thread-Local 

Whenever possible, do not share resources 
 

– Easier for each thread have its own thread-local  

copy of a resource instead of one with shared updates 
 

– Correct only if threads do not communicate through resource 

• In other words, multiple copies are a correct approach 

• Example: Random objects 
 

– Note:  

 Because each call-stack is thread-local,  

 never need to synchronize on local variables 

 

In typical concurrent programs, the vast majority of objects  

should be thread-local: shared-memory usage should be minimized 



Immutable 

Whenever possible, do not update objects 

– Make new objects instead 

 

One of the key tenets of functional programming (see CSE 341) 

– Generally helpful to avoid side-effects 

– Much more helpful in a concurrent setting 

 

If a location is only read, never written, no synchronization needed 

– Simultaneous reads are not races and not a problem 
 

In practice, programmers usually over-use mutation – minimize it 



Everything Else:  Keep it Synchronized 

After minimizing the amount of memory that is both 

(1) thread-shared and (2) mutable, we need guidelines  

for how to use locks to keep that data consistent 

 

Guideline #0: No data races 

• Never allow two threads to read/write or write/write  

the same location at the same time 

 

Necessary:  

 In Java or C, a program with a data race is almost always wrong 

 

But Not Sufficient:  

 Our peek example had no data races 

 



Consistent Locking 

Guideline #1: Consistent Locking 

For each location that requires synchronization,  

have a lock that is always held when reading or writing the location 

 

• We say the lock guards the location 

 

• The same lock can guard multiple locations (and often should)  

 

• Clearly document the guard for each location 

 

• In Java, the guard is often the object containing the location 

– this inside object methods 

– But also common to guard a larger structure  

with one lock to ensure mutual exclusion on the structure 

 



Consistent Locking 

• The mapping from locations to guarding locks is conceptual,  

and must be enforced by you as the programmer 

• It partitions the shared-&-mutable locations into “which lock” 

Consistent locking is: 
 

Not Sufficient:  

It prevents all data races, but still allows bad interleavings 

– Our peek example used consistent locking, but had 

exposed intermediate states and bad interleavings 
 

Not Necessary:  

Can dynamically change the locking protocol 

 



Beyond Consistent Locking 

• Consistent locking is an excellent guideline 

– A “default assumption” about program design 

– You will save yourself many a headache using this guideline 
 

• But it is not required for correctness:  

Different program phases can use different locking techniques 

– Provided all threads coordinate moving to the next phase 
 

• Example from Project 3 Version 5: 

– A shared grid being updated, so use a lock for each entry 

– But after the grid is filled out, all threads except 1 terminate 

• So synchronization no longer necessary (i.e., thread local) 

– And later the grid is only read in response to queries 

• Makes synchronization doubly unnecessary (i.e., immutable) 



Lock Granularity 

Coarse-Grained:  Fewer locks (i.e., more objects per lock) 

– Example: One lock for entire data structure (e.g., array) 

– Example: One lock for all bank accounts 

 

 

 

Fine-Grained: More locks (i.e., fewer objects per lock) 

– Example: One lock per data element (e.g., array index) 

– Example: One lock per bank account 

 

 

 

 

“Coarse-grained vs. fine-grained” is really a continuum 

… 

… 



Trade-Offs 

Coarse-grained advantages 

– Simpler to implement 

– Faster/easier to implement operations that access multiple 

locations (because all guarded by the same lock) 

– Much easier to implement modifications of data-structure shape 

 

Fine-grained advantages 

– More simultaneous access (improves performance  

when coarse-grained would lead to unnecessary blocking) 

 

Guideline #2: Lock Granularity 

Start with coarse-grained (simpler), move to fine-grained (performance) 

only if contention on coarse locks is an issue.  Alas, often leads to bugs. 



Example: Separate Chaining Hashtable 

• Coarse-grained: One lock for entire hashtable 

• Fine-grained: One lock for each bucket 

 

Which supports more concurrency for insert and lookup? 

  Fine-grained; allows simultaneous access to diff. buckets 

 

Which makes implementing resize easier? 

 Coarse-grained; just grab one lock and proceed 

– How would you do it? 

 

Maintaining a numElements field will destroy  

the potential benefits of using separate locks for each bucket, why? 

 Updating it each insert w/o a coarse lock would be a data race 

 



Critical-Section Granularity 

A second, orthogonal granularity issue is critical-section size 

– How much work to do while holding lock(s) 

 

If critical sections run for too long: 

– Performance loss because other threads are blocked 

 

If critical sections are too short: 

– Bugs because you broke up something where  

other threads should not be able to see intermediate state 

 

Guideline #3: Granularity 

Do not do expensive computations or I/O in critical sections,  

but also do not introduce race conditions 



Example: Critical-Section Granularity 

Suppose we want to change the value for a key in a hashtable 

without removing it from the table 

– Assume lock guards the whole table 

synchronized(lock) { 

  v1 = table.lookup(k); 

  v2 = expensive(v1); 

  table.remove(k); 

  table.insert(k,v2); 

} 

Papa Bear’s 

critical section 

was too long 

 

(table locked 

during 

expensive call) 



Example: Critical-Section Granularity 

Suppose we want to change the value for a key in a hashtable 

without removing it from the table 

– Assume lock guards the whole table 

synchronized(lock) { 

  v1 = table.lookup(k); 

} 

v2 = expensive(v1); 

synchronized(lock) { 

  table.remove(k); 

  table.insert(k,v2); 

} 

Mama Bear’s 

critical section 

was too short 

 

(if another thread  

updated the entry, 

we will lose an 

update) 



Example: Critical-Section Granularity 

Suppose we want to change the value for a key in a hashtable 

without removing it from the table 

– Assume lock guards the whole table 

done = false; 

while(!done) { 

  synchronized(lock) { 

    v1 = table.lookup(k); 

  }  

  v2 = expensive(v1); 

  synchronized(lock) { 

    if(table.lookup(k)==v1) { 

      done = true; 

      table.remove(k); 

      table.insert(k,v2); 

}}} 

Baby Bear’s 

critical section 

was just right 

 

(if another update 

occurred, try our 

update again) 



Atomicity 

An operation is atomic if no other thread can see it partly executed 

– Atomic as in “appears indivisible” 

– Typically want ADT operations atomic,  

even to other threads running operations on the same ADT 

 

Guideline #4: Atomicity 

– Think in terms of what operations need to be atomic 

– Make critical sections just long enough to preserve atomicity 

– Then design locking protocol to implement the critical sections 

 

In other words:  

 Think about atomicity first and locks second 



Do Not Roll Your Own 

• It is rare that you should write your own data structure 

– Excellent implementations provided in standard libraries 

– Point of CSE 332 is to understand the key trade-offs, 

abstractions, and analysis of such implementations 

 

• Especially true for concurrent data structures 

– Far too difficult to provide fine-grained  

synchronization without race conditions 

– Standard thread-safe libraries like 
ConcurrentHashMap written by world experts 

 

Guideline #5: Libraries 

Use built-in libraries whenever they meet your needs 



Motivating Memory-Model Issues 

Tricky and surprisingly wrong unsynchronized concurrent code 

class C { 

  private int x = 0; 

  private int y = 0; 

 

  void f() { 

    x = 1; 

    y = 1; 

  } 

  void g() { 

    int a = y; 

    int b = x; 

    assert(b >= a); 

  }    

} 

First understand why it looks like 

the assertion cannot fail: 

 

• Easy case: call to g ends before 

any call to f starts 

 

• Easy case: at least one call to f 

completes before call to g starts 

 

• If calls to f and g interleave… 



Interleavings are Not Enough 

There is no interleaving of f and g where the assertion fails 

– Proof #1: Exhaustively consider all possible orderings of 

access to shared memory (there are 6) 

– Proof #2:  
If !(b>=a), then a==1 and b==0.   

But if a==1, then y=1 happened before a=y.   

Because programs execute in order: 
 a=y happened before b=x and x=1 happened before y=1. 

So by transitivity, b==1.  Contradiction. 

x = 1; 

 

y = 1; 

 

 

 

int a = y; 

 

int b = x; 

 

assert(b >= a); 

Thread 1: f Thread 2: g 



Wrong 

However, the code has a data race 

– Unsynchronized read/write or write/write of same location 

 

If code has data races, you cannot reason about it with interleavings 

– This is simply the rules of Java (and C, C++, C#, other languages) 

– Otherwise we would slow down all programs just to “help” those 

with data races, and that would not be a good engineering trade-off 

– So the assertion can fail 

 

 



Why 

For performance reasons, the compiler and the hardware  

will often reorder memory operations 

– Take a compiler or computer architecture course to learn more 

x = 1; 

 

y = 1; 

 

 

 

int a = y; 

 

int b = x; 

 

assert(b >= a); 

Thread 1: f Thread 2: g 

Of course, we cannot just let them reorder anything they want 

• Each thread computes things by executing code in order 

• Consider: x=17; y=x; 

 



The Grand Compromise 

The compiler/hardware will never perform a memory reordering that 

affects the result of a single-threaded program 

 

The compiler/hardware will never perform a memory reordering that 

affects the result of a data-race-free multi-threaded program 

 

So:  If no interleaving of your program has a data race,  

 then you can forget about all this reordering nonsense:  

 the result will be equivalent to some interleaving 

 

Your job: Avoid data races 

Compiler/hardware job: Give illusion of interleaving if you do your job 

 



Fixing Our Example 

• Naturally, we can use synchronization to avoid data races 

– Then, indeed, the assertion cannot fail 

class C { 

  private int x = 0; 

  private int y = 0; 

  void f() { 

    synchronized(this) { x = 1; } 

    synchronized(this) { y = 1; } 

  } 

  void g() { 

    int a, b; 

    synchronized(this) { a = y; } 

    synchronized(this) { b = x; } 

    assert(b >= a); 

  }    

} 



A Second Fix:  Stay Away from This 

• Java has volatile fields: accesses do not count as data races  

– But you cannot read-update-write 

 

 

 

 

 

 

 

 

 

 

• Implementation: slower than regular fields, faster than locks 

• Really for experts: avoid them; use standard libraries instead 

• And why do you need code like this anyway? 

class C { 

  private volatile int x = 0; 

  private volatile int y = 0; 

  void f() { 

    x = 1; 

    y = 1; 

  } 

  void g() { 

    int a = y; 

    int b = x; 

    assert(b >= a); 

  }    

} 



Code That is Wrong 

• Here is a more realistic example of code that is wrong 

– No guarantee Thread 2 will ever stop (as there is a data race) 

– But honestly it will “likely work in practice” 

class C { 

  boolean stop = false; 

  void f() { 

    while(!stop) { 

      // draw a monster 

    } 

  } 

  void g() { 

    stop = didUserQuit(); 

  }    

} 

Thread 1:  f() 

Thread 2:  g() 



Motivating Deadlock Issues 

Consider a method to transfer money between bank accounts  

class BankAccount { 

  … 

  synchronized void withdraw(int amt) {…} 

  synchronized void deposit(int amt) {…} 

  synchronized void transferTo(int amt,   

                               BankAccount a) { 

    this.withdraw(amt); 

    a.deposit(amt); 

  }   

} 

Notice during call to a.deposit, thread holds two locks 

– Need to investigate when this may be a problem 



The Deadlock 

acquire lock for x 

do withdraw from x 

 

 

 

 

block on lock for y 

 

 

 

 

 

acquire lock for y 

do withdraw from y 

 

block on lock for x 

Thread 1: x.transferTo(1,y) 

T
im

e
 

Suppose x and y are fields holding accounts 

Thread 2: y.transferTo(1,x) 



The Dining Philosophers 

• 5 philosophers go out to dinner together at an Italian restaurant 

• Sit at a round table; one fork per setting 

• When the spaghetti comes, each philosopher proceeds to grab their 

right fork, then their left fork, then eats 

• ‘Locking’ for each fork results in a deadlock 



Deadlock 

A deadlock occurs when there are threads T1, …, Tn such that: 

• For i=1,..,n-1, Ti is waiting for a resource held by T(i+1) 

• Tn is waiting for a resource held by T1 

 

In other words, there is a cycle of waiting 

– Can formalize as a graph of dependencies with cycles bad 

 

Deadlock avoidance in programming amounts to  

techniques to ensure a cycle can never arise 



Back to Our Example 

Options for deadlock-proof transfer: 
 

1. Make a smaller critical section: transferTo not synchronized 

– Exposes intermediate state after withdraw before deposit 

– May be okay, but exposes wrong total amount in bank 
 

2. Coarsen lock granularity:  

one lock for all accounts allowing transfers between them 

– Works, but sacrifices concurrent deposits/withdrawals 
 

3. Give every bank-account a unique number  

and always acquire locks in the same order 

– Entire program should obey this order to avoid cycles 

– Code acquiring only one lock can ignore the order 



Ordering Locks 
class BankAccount { 

  … 

  private int acctNumber; // must be unique 

  void transferTo(int amt, BankAccount a) { 

    if(this.acctNumber < a.acctNumber) 

       synchronized(this) { 

       synchronized(a) { 

          this.withdraw(amt); 

          a.deposit(amt); 

       }} 

    else 

       synchronized(a) { 

       synchronized(this) { 

          this.withdraw(amt); 

          a.deposit(amt); 

       }} 

  } 

} 



StringBuffer Example 

From the Java standard library 

class StringBuffer { 

  private int count; 

  private char[] value; 

  … 

  synchronized append(StringBuffer sb) { 

    int len = sb.length(); 

    if(this.count + len > this.value.length) 

      this.expand(…); 

    sb.getChars(0,len,this.value,this.count); 

 … 
} 

  synchronized getChars(int x, int, y,  

                        char[] a, int z) { 

    “copy this.value[x..y] into a starting at z” 

  } 

} 



Two Problems 

Problem #1:  
Lock for sb not held between calls to sb.length and sb.getChars  

– So sb could get longer 

– Would cause append to throw an ArrayBoundsException 
 

Problem #2:  
Deadlock potential if two threads try to append in opposite directions, 

identical to the bank-account first example 
 

Not easy to fix both problems without extra copying: 

– Do not want unique ids on every StringBuffer 

– Do not want one lock for all StringBuffer objects 
 

Actual Java library: fixed neither (left code as is; changed documentation)  

– Up to clients to avoid such situations with own protocols 



Perspective 

• Code like account-transfer and string-buffer append  

are difficult to deal with for deadlock 

 

• Easier case: different types of objects  

– Can document a fixed order among types 

– Example: “When moving an item from the hashtable to the work 

  queue, never try to acquire the queue lock while  

  holding the hashtable lock” 

 

• Easier case: objects are in an acyclic structure 

– Can use the data structure to determine a fixed order 

– Example: “If holding a tree node’s lock, do not acquire other 

  tree nodes’ locks unless they are children in the tree” 

 

 


