
CSE332: Data Abstractions

Lecture 19: Mutual Exclusion and Locking

James Fogarty

Winter 2012

Including slides developed in part by

Ruth Anderson, James Fogarty, Dan Grossman

Banking Example

This code is correct in a single-threaded world

class BankAccount {

 private int balance = 0;

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 int b = getBalance();

 if(amount > b)

 throw new InsufficientFundsException();

 setBalance(b – amount);

 }

 … // other operations like deposit, etc.

}

Interleaving

Suppose:

– Thread T1 calls x.withdraw(100)

– Thread T2 calls y.withdraw(100)

If second call starts before first finishes, we say the calls interleave

– Could happen even with one processor,

as a thread can be pre-empted for time-slicing

(e.g., T1 runs for 50 ms, T2 runs for 50ms, T1 resumes)

If x and y refer to different accounts, no problem

– “You cook in your kitchen while I cook in mine”

But if x and y alias, possible trouble…

Bad Interleaving

Interleaved withdraw(100) calls on the same account

– Assume initial balance == 150

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

Incorrect Attempt to “Fix”

Interleaved withdraw(100) calls on the same account

– Assume initial balance == 150

int b = getBalance();

if(amount > getBalance())

 throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > getBalance())

 throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

This interleaving would throw an exception

Incorrect Attempt to “Fix”

Interleaved withdraw(100) calls on the same account

– Assume initial balance == 150

int b = getBalance();

if(amount > getBalance())

 throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > getBalance())

 throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

But this interleaving loses the withdrawal

Incorrect Attempt to “Fix”

Interleaved withdraw(100) calls on the same account

– Assume initial balance == 150

int b = getBalance();

if(amount > getBalance())

 throw new …;

setBalance(
 getBalance() – amount
);

int b = getBalance();

if(amount > getBalance())

 throw new …;

setBalance(
 getBalance() – amount
);

Thread 1 Thread 2

T
im

e

Does not “lose” money in

this particular interleaving,

but is still wrong

Incorrect Attempt to “Fix”

It can be tempting, but is generally wrong, to attempt

to “fix” a bad interleaving by rearranging or repeating operations

void withdraw(int amount) {

 if(amount > getBalance())

 throw new InsufficientFundsException();

 // maybe balance changed

 setBalance(getBalance() – amount);

}

Only narrows the problem by one statement

• Imagine a withdrawal is interleaved after computing
the value of the parameter getBalance() – amount

but before invocation of the function setBalance

Your compiler might even remove the second call to getBalance(),

because you have not told it you need to synchronize

Mutual Exclusion

The sane fix is to allow only one thread withdrawing from A at a time

– Also exclude other simultaneous operations on A

that could potentially result in bad interleavings (e.g., deposit)

Mutual exclusion: One thread doing something with a resource

means that any other thread must wait until the resource is available

– Define critical sections; areas of code that are mutually exclusive

Programmer must implement critical sections

– “The compiler” has no idea what interleavings

should or should not be allowed in your program

– But you will need language primitives to do this

Incorrect Attempt to “Do it Ourselves”

class BankAccount {

 private int balance = 0;

 private boolean busy = false;

 void withdraw(int amount) {

 while(busy) { /* “spin-wait” */ }

 busy = true;

 int b = getBalance();

 if(amount > b)

 throw new InsufficientFundsException();

 setBalance(b – amount);

 busy = false;

 }

 // deposit would spin on same boolean

}

This Just Moves the Problem

while(busy) { }

busy = true;

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

while(busy) { }

busy = true;

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

Need Help from the Language

• There are many ways out of this conundrum

• One basic solution: Locks

– Still on a conceptual, ‘Lock’ is not a Java class

• We will define Lock as an ADT with operations:

– new: make a new lock

– acquire: If lock is “not held”, makes it “held”

• Blocks if this lock is already currently “held”

• Checking & Setting happen atomically, cannot be interrupted

– Details of that require hardware and system support

– release: makes this lock “not held”

• if >= 1 threads are blocked on it, exactly 1 will acquire it

Still Incorrect Pseudocode

class BankAccount {

 private int balance = 0;

 private Lock lk = new Lock();

 …

 void withdraw(int amount) {

 lk.acquire(); /* may block */

 int b = getBalance();

 if(amount > b)

 throw new InsufficientFundsException();

 setBalance(b – amount);

 lk.release();

 }

 // deposit would also acquire/release lk

}

Some Mistakes

• A lock is a very primitive mechanism

– Still must be used correctly to implement critical sections

• Incorrect: Forget to release a lock, thus blocks other threads forever

– Previous slide is wrong because of the exception possibility

• Incorrect : Use different locks for withdraw and deposit

– Mutual exclusion works only when using same lock

– Balance is the shared resource that is being protected

• Poor performance: Use same lock for every bank account

– No simultaneous withdrawals from different accounts

if(amount > b) {
 lk.release(); // hard to remember!
 throw new WithdrawTooLargeException();

}

Other Operations

• If withdraw and deposit use the same lock, then

simultaneous calls to these methods are properly synchronized

• But what about getBalance and setBalance

– Assume they are public, which may be reasonable

• If they do not acquire the same lock, then a race between
setBalance and withdraw could produce a wrong result

• If they do acquire the same lock, then withdraw would

block forever because it tries to acquire a lock it already has

…

 lk.acquire();

 int b = getBalance();

…

One Bad Option

Two versions of setBalance

• Safe and unsafe versions

• Use one or the other,

depending on whether

you already have the lock

Technically could work

• Hard to always remember

• And definitely poor style

Better to modify meaning of

the Lock ADT to support

re-entrant locks

int setBalanceUnsafe(int x) {

 balance = x;

}

int setBalanceSafe(int x) {

 lk.acquire();

 balance = x;

 lk.release();

}

void withdraw(int amount) {

 lk.acquire();

 …

 setBalanceUnsafe(b – amount);

 lk.release();

}

Re-Entrant Locking

A re-entrant lock is also known as a recursive lock

– “Remembers” the thread that currently holds it

– Stores a count of “how many” times it is held

• When lock goes from not-held to held, the count is set to 0

• If the current holder calls acquire:

– it does not block

– it increments the count

• On release:

– if the count is > 0, the count is decremented

– if the count is 0, the lock becomes not-held

withdraw can acquire the lock, and then call setBalance

Java’s Re-Entrant Lock

java.util.concurrent.locks.ReentrantLock

– Has methods lock() and unlock()

Important to guarantee that lock is always released

Regardless what happens in ‘try’, finally code will execute

myLock.lock();

try {

 // method body

} finally {

 myLock.unlock();

}

A Java Convenience: Synchronized

Java has built-in support for re-entrant locks

– You can use the synchronized statement as an

alternative to declaring a ReentrantLock

synchronized (expression) {

 statements

}

1. Evaluates expression to an object

• Every object “is a lock” in Java (but not primitive types)

2. Acquires the lock, blocking if necessary

• “If you get past the {, you have the lock”

3. Releases the lock “at the matching }”

• Even if control leaves due to throw, return, or whatever

• So it is impossible to forget to release the lock

Java Version #1: Correct but not “Java Style”

class BankAccount {

 private int balance = 0;

 private Object lk = new Object();

 int getBalance()

 { synchronized (lk) { return balance; } }

 void setBalance(int x)

 { synchronized (lk) { balance = x; } }

 void withdraw(int amount) {

 synchronized (lk) {

 int b = getBalance();

 if(amount > b)

 throw …

 setBalance(b – amount);

 }

 }

 // deposit would also use synchronized(lk)

}

Improving the Java

• As written, the lock is private

– Might seem like a good idea

– But also prevents code in other classes from writing

operations that synchronize with the account operations

• Example motivations with our bank record?

• It is more common to synchronize on this

– It is also convenient; no need to declare an extra object

Java Version #2: Still Missing Sugar
class BankAccount {

 private int balance = 0;

 int getBalance()

 { synchronized (this){ return balance; } }

 void setBalance(int x)

 { synchronized (this){ balance = x; } }

 void withdraw(int amount) {

 synchronized (this) {

 int b = getBalance();

 if(amount > b)

 throw …

 setBalance(b – amount);

 }

 }

 // deposit would also use synchronized(this)

}

Syntactic Sugar

Java provides a concise and standard way to say the same thing:

Applying the synchronized keyword to a method declaration

means the entire method body is surrounded by

synchronized(this){

 …

}

Next version means exactly the same thing,

but is more concise and more the “style of Java”

Java Version #3: Final Version

class BankAccount {

 private int balance = 0;

 synchronized int getBalance()

 { return balance; }

 synchronized void setBalance(int x)

 { balance = x; }

 synchronized void withdraw(int amount) {

 int b = getBalance();

 if(amount > b)

 throw …

 setBalance(b – amount);

 }

 // deposit would also use synchronized

}

Races

A race condition occurs when the computation result depends on

scheduling (how threads are interleaved on one or more processors)

– If T1 and T2 are scheduled in a particular way, then things go wrong

– As programmers, we cannot control scheduling of threads;

we need to write programs that are correct independent of scheduling

Race conditions are bugs that exist only due to concurrency

– No interleaved scheduling with 1 thread

Typically, the problem is some intermediate state that

“messes up” a concurrent thread that “sees” that state

We will distinguish between data races and bad interleavings,

both of which are types of race condition bugs

Data Races

• A data race is a type of race condition that can happen in 2 ways:

– Two threads can potentially write a variable at the same time

– One thread can potentially write a variable while another reads it

• Simultaneous reads are fine; not a data race, and no bad results

• ‘Potentially’ is important; we say the code itself has a data race

– This is independent of any particular actual execution

• Data races are bad, but are not the only form of race condition

– We can have a race, and bad behavior, without any data race

Stack Example

class Stack<E> {

 private E[] array = (E[])new Object[SIZE];

 int index = -1;

 synchronized boolean isEmpty() {

 return index==-1;

 }

 synchronized void push(E val) {

 array[++index] = val;

 }

 synchronized E pop() {

 if(isEmpty())

 throw new StackEmptyException();

 return array[index--];

 }

}

A Race Condition: But Not a Data Race

class Stack<E> {

 …

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop(E val) {

 if(isEmpty())

 throw new StackEmptyException();

 …

 }

}

E peek() {

 E ans = pop();

 push(ans);

 return ans;

}

• In a sequential

world, this code is

of questionable

style, but correct

• The “algorithm”

is the only way
to write a peek

helper method if

all you have is

this interface

Examining peek in a Concurrent Context

• peek has no overall effect on the shared data

– It is a “reader” not a “writer”

– State should be the same after it executes as before

• This implementation creates an inconsistent intermediate state

– Calls to push and pop are synchronized,

so there are no data races on the underlying array

– But there is still a race condition

• This intermediate state

should not be exposed

– Leads to several

bad interleavings

E peek() {

 E ans = pop();

 push(ans);

 return ans;

}

Example 1: peek and isEmpty

• Property we want:
 If there has been a push (and no pop),

 then isEmpty should return false

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)

boolean b = isEmpty()

T
im

e

Thread 2 Thread 1 (peek)

Example 1: peek and isEmpty

• Property we want:
 If there has been a push (and no pop),

 then isEmpty should return false

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)

boolean b = isEmpty()

T
im

e

Thread 2 Thread 1 (peek)

Race causes error with:

 T2: push(x)

 T1: pop()

 T2: isEmpty()

Example 2: peek and push

• Property we want:
 Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)

push(y)

E e = pop()

T
im

e

Thread 2 Thread 1 (peek)

Example 2: peek and push

• Property we want:
 Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)

push(y)

E e = pop()

T
im

e

Thread 2 Thread 1 (peek)

Race causes error with:

 T2: push(x)

 T1: pop()

 T2: push(x)

 T1: push(x)

Example 2: peek and push

• Property we want:
 Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)

push(y)

E e = pop()

T
im

e

Thread 2 Thread 1 (peek)

Race causes error with:

 T2: push(x)

 T2: push(x)

 T1: pop()

 T2: pop()

Example 3: peek and peek

• Property we want:
 peek does not throw an exception unless stack is empty

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 (peek)

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)

Example 3: peek and peek

• Property we want:
 peek does not throw an exception unless stack is empty

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 (peek)

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)

The Fix

• In short, peek needs synchronization to disallow interleavings

– The key is to make a larger critical section

• This protects the intermediate state of peek

– Use re-entrant locks; will allow calls to push and pop

– Can be done in stack (on left) or an external class (on right)

class Stack<E> {

 …

 synchronized E peek(){

 E ans = pop();

 push(ans);

 return ans;

 }

}

class C {

 <E> E myPeek(Stack<E> s){

 synchronized (s) {

 E ans = s.pop();

 s.push(ans);

 return ans;

 }

 }

}

An Incorrect “Fix”

• So far we have focused on problems created when peek

performs writes that lead to an incorrect intermediate state

• A tempting but incorrect perspective

– If an implementation of peek does not write anything,

then maybe we can skip the synchronization?

• Does not work due to data races with push and pop

– Same issue applies with other readers, such as isEmpty

Another Incorrect Example

class Stack<E> {

 private E[] array = (E[])new Object[SIZE];

 int index = -1;

 boolean isEmpty() { // unsynchronized: wrong?!

 return index==-1;

 }

 synchronized void push(E val) {

 array[++index] = val;

 }

 synchronized E pop() {

 return array[index--];

 }

 E peek() { // unsynchronized: wrong!

 return array[index];

 }

}

Why Wrong?

• It looks like isEmpty and peek can “get away with this”

because push and pop adjust the state “in one tiny step”

• But this code is still wrong and depends on

language-implementation details you cannot assume

– Even “tiny steps” may require multiple steps in implementation:
array[++index] = val probably takes at least two steps

– Code has a data race, allowing very strange behavior

• Do not introduce a data race,

even if every interleaving you can think of is correct

Getting it Right

Avoiding race conditions on shared resources is difficult

– Decades of bugs have led to some conventional wisdom,

 general techniques that are known to work

Rest of lecture distills key ideas and trade-offs

– More available in the suggested additional readings

– But none of this is specific to Java or a particular book

• May be hard to appreciate in beginning

• Come back to these guidelines over the years

• Do not try to be fancy

